TY - GEN
T1 - How ELTs will acquire the first spectra of rocky habitable planets
AU - Guyon, Olivier
AU - Martinache, Frantz
AU - Cady, Eric
AU - Belikov, Ruslan
AU - Kunjithapatham, Balasubramanian
AU - Wilson, Daniel
AU - Clergeon, Christophe
AU - Mateen, Mala
PY - 2012
Y1 - 2012
N2 - ELTs will offer angular resolution around 10mas in the near-IR and unprecedented sensitivity. While direct imaging of Earth-like exoplanets around Sun-like stars will stay out of reach of ELTs, we show that habitable planets around nearby M-type main sequence stars can be directly imaged. For about 300 nearby M dwarfs, the angular separation at maximum elongation is at or beyond 1 λ/D in the near-IR for an ELT. The planet to star contrast is 1e-7 to 1e-8, similar to what the upcoming generation of Extreme-AO systems will achieve on 8-m telescopes, and the potential planets are sufficiently bright for near-IR spectroscopy. We show that the technological solutions required to achieve this goal exist. For example, the PIAACMC coronagraph can deliver full starlight rejection, 100% throughput and sub-λ/D IWA for the EELT, GMT and TMT pupils. A closely related coronagraph is part of SCExAO on Subaru. We conclude that large ground-based telescopes will acquire the first high quality spectra of habitable planets orbiting M-type stars, while future space mission(s) will later target F-G-K type stars.
AB - ELTs will offer angular resolution around 10mas in the near-IR and unprecedented sensitivity. While direct imaging of Earth-like exoplanets around Sun-like stars will stay out of reach of ELTs, we show that habitable planets around nearby M-type main sequence stars can be directly imaged. For about 300 nearby M dwarfs, the angular separation at maximum elongation is at or beyond 1 λ/D in the near-IR for an ELT. The planet to star contrast is 1e-7 to 1e-8, similar to what the upcoming generation of Extreme-AO systems will achieve on 8-m telescopes, and the potential planets are sufficiently bright for near-IR spectroscopy. We show that the technological solutions required to achieve this goal exist. For example, the PIAACMC coronagraph can deliver full starlight rejection, 100% throughput and sub-λ/D IWA for the EELT, GMT and TMT pupils. A closely related coronagraph is part of SCExAO on Subaru. We conclude that large ground-based telescopes will acquire the first high quality spectra of habitable planets orbiting M-type stars, while future space mission(s) will later target F-G-K type stars.
KW - Coronagraphy
KW - Exoplanets
KW - Extreme-AO
UR - http://www.scopus.com/inward/record.url?scp=84871765402&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871765402&partnerID=8YFLogxK
U2 - 10.1117/12.927181
DO - 10.1117/12.927181
M3 - Conference contribution
AN - SCOPUS:84871765402
SN - 9780819491480
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Adaptive Optics Systems III
T2 - Adaptive Optics Systems III
Y2 - 1 July 2012 through 6 July 2012
ER -