TY - JOUR
T1 - How and when do insects rely on endogenous protein and lipid resources during lethal bouts of starvation? A new application for 13C-Breath testing
AU - McCue, Marshall D.
AU - Marena Guzman, R.
AU - Passement, Celeste A.
AU - Davidowitz, Goggy
N1 - Publisher Copyright:
© Copyright: 2015 McCue et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2015/10/14
Y1 - 2015/10/14
N2 - Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies thatmonitor vertebrates through the lethal endpoint are scant. Insects are convenientmodels to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths) on diets labeled with either 13C-palmitic acid or 13C-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved.We periodically measured the δ13C of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae) were still relying extensively on lipids at the time of death, other species (crickets and moth larvae) allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are criticalmetabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation.
AB - Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies thatmonitor vertebrates through the lethal endpoint are scant. Insects are convenientmodels to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths) on diets labeled with either 13C-palmitic acid or 13C-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved.We periodically measured the δ13C of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae) were still relying extensively on lipids at the time of death, other species (crickets and moth larvae) allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are criticalmetabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation.
UR - http://www.scopus.com/inward/record.url?scp=84948953140&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84948953140&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0140053
DO - 10.1371/journal.pone.0140053
M3 - Article
C2 - 26465334
AN - SCOPUS:84948953140
SN - 1932-6203
VL - 10
JO - PloS one
JF - PloS one
IS - 10
M1 - e0140053
ER -