TY - JOUR
T1 - Homology-guided mutational analysis reveals the functional requirements for antinociceptive specificity of collapsin response mediator protein 2-derived peptides
AU - Moutal, Aubin
AU - Li, Wennan
AU - Wang, Yue
AU - Ju, Weina
AU - Luo, Shizhen
AU - Cai, Song
AU - François-Moutal, Liberty
AU - Perez-Miller, Samantha
AU - Hu, Jackie
AU - Dustrude, Erik T.
AU - Vanderah, Todd W.
AU - Gokhale, Vijay
AU - Khanna, May
AU - Khanna, Rajesh
N1 - Publisher Copyright:
© 2017 The British Pharmacological Society
PY - 2018/6
Y1 - 2018/6
N2 - Background and Purpose: N-type voltage-gated calcium (Ca v 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Ca v 2.2 channel antagonists are recommended as first-line treatment for neuropathic pain, calcium-current blocking gabapentinoids inadequately alleviate chronic pain symptoms and often exhibit numerous side effects. Collapsin response mediator protein 2 (CRMP2) targets Ca v 2.2 channels to the sensory neuron membrane and allosterically modulates their function. A 15-amino-acid peptide (CBD3), derived from CRMP2, disrupts the functional protein–protein interaction between CRMP2 and Ca v 2.2 channels to inhibit calcium influx, transmitter release and acute, inflammatory and neuropathic pain. Here, we have mapped the minimal domain of CBD3 necessary for its antinociceptive potential. Experimental Approach: Truncated as well as homology-guided mutant versions of CBD3 were generated and assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons, binding between CRMP2 and Ca v 2.2 channels, whole-cell voltage clamp electrophysiology and behavioural effects in two models of experimental pain: post-surgical pain and HIV-induced sensory neuropathy induced by the viral glycoprotein 120. Key Results: The first six amino acids within CBD3 accounted for all in vitro activity and antinociception. Spinal administration of a prototypical peptide (TAT-CBD3-L5M) reversed pain behaviours. Homology-guided mutational analyses of these six amino acids identified at least two residues, Ala1 and Arg4, as being critical for antinociception in two pain models. Conclusions and Implications: These results identify an antinociceptive scaffold core in CBD3 that can be used for development of low MW mimetics of CBD3. Linked Articles: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
AB - Background and Purpose: N-type voltage-gated calcium (Ca v 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Ca v 2.2 channel antagonists are recommended as first-line treatment for neuropathic pain, calcium-current blocking gabapentinoids inadequately alleviate chronic pain symptoms and often exhibit numerous side effects. Collapsin response mediator protein 2 (CRMP2) targets Ca v 2.2 channels to the sensory neuron membrane and allosterically modulates their function. A 15-amino-acid peptide (CBD3), derived from CRMP2, disrupts the functional protein–protein interaction between CRMP2 and Ca v 2.2 channels to inhibit calcium influx, transmitter release and acute, inflammatory and neuropathic pain. Here, we have mapped the minimal domain of CBD3 necessary for its antinociceptive potential. Experimental Approach: Truncated as well as homology-guided mutant versions of CBD3 were generated and assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons, binding between CRMP2 and Ca v 2.2 channels, whole-cell voltage clamp electrophysiology and behavioural effects in two models of experimental pain: post-surgical pain and HIV-induced sensory neuropathy induced by the viral glycoprotein 120. Key Results: The first six amino acids within CBD3 accounted for all in vitro activity and antinociception. Spinal administration of a prototypical peptide (TAT-CBD3-L5M) reversed pain behaviours. Homology-guided mutational analyses of these six amino acids identified at least two residues, Ala1 and Arg4, as being critical for antinociception in two pain models. Conclusions and Implications: These results identify an antinociceptive scaffold core in CBD3 that can be used for development of low MW mimetics of CBD3. Linked Articles: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
UR - http://www.scopus.com/inward/record.url?scp=85016425702&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016425702&partnerID=8YFLogxK
U2 - 10.1111/bph.13737
DO - 10.1111/bph.13737
M3 - Article
C2 - 28161890
AN - SCOPUS:85016425702
SN - 0007-1188
VL - 175
SP - 2244
EP - 2260
JO - British Journal of Pharmacology
JF - British Journal of Pharmacology
IS - 12
ER -