Abstract
Neural networks receive input that is transformed before being sent as output to higher centers of processing. These transformations are often mediated by local interneurons (LNs) that influence output based on activity across the network. In primary olfactory centers, the LNs that mediate these lateral interactions are extremely diverse. For instance, the antennal lobes (ALs) of bumblebees possess both γ-aminobutyric acid (GABA)-and histamine-immunoreactive (HA-ir) LNs, and both are neurotransmitters associated with fast forms of inhibition. Although the GABAergic network of the AL has been extensively studied, we sought to examine the anatomical features of the HA-ir LNs in relation to the other cellular elements of the bumblebee AL. As a population, HA-ir LNs densely innervate the glomerular core and sparsely arborize in the outer glomerular rind, overlapping with the terminals of olfactory receptor neurons. Individual fills of HA-ir LNs revealed heavy arborization of the outer ring of a single "principal" glomerulus and sparse arborization in the core of other glomeruli. In contrast, projection neurons and GABA-immunoreactive LNs project throughout the glomerular volume. To provide insight into the selective pressures that resulted in the evolution of HA-ir LNs, we determined the phylogenetic distribution of HA-ir LNs in the AL. HA-ir LNs were present in all but the most basal hymenopteran examined, although there were significant morphological differences between major groups within the Hymenoptera. The ALs of other insect taxa examined lacked HA-ir LNs, suggesting that this population of LNs arose within the Hymenoptera and underwent extensive morphological modification.
Original language | English (US) |
---|---|
Pages (from-to) | 2917-2933 |
Number of pages | 17 |
Journal | Journal of Comparative Neurology |
Volume | 518 |
Issue number | 15 |
DOIs | |
State | Published - Aug 1 2010 |
Keywords
- Hymenoptera
- histamine
- insect brain
- olfaction
ASJC Scopus subject areas
- General Neuroscience