Abstract
The discrete spectrum of disturbances in high-speed boundary layers is discussed with emphasis on singularities caused by synchronization of the normal modes. Numerical examples illustrate different spectral structures and jumps from one structure to another with small variations of basic flow parameters. It is shown that this singular behavior is due to branching of the dispersion curves in the synchronization region. Depending on the locations of the branch points, the spectrum contains an unstable mode or two. In connection with this, the terminology used for instability of high-speed boundary layers is clarified. It is emphasized that the spectrum branching may cause difficulties in stability analyses based on traditional linear stability theory and parabolized stability equations methods. Multiple-mode considerations and direct numerical simulations are needed to clarify this issue.
Original language | English (US) |
---|---|
Pages (from-to) | 1647-1657 |
Number of pages | 11 |
Journal | AIAA journal |
Volume | 49 |
Issue number | 8 |
DOIs | |
State | Published - Aug 2011 |
ASJC Scopus subject areas
- Aerospace Engineering