Abstract
SN 2017hcc was remarkable for being a nearby and strongly polarized superluminous Type IIn supernova (SN). We obtained high-resolution Echelle spectra that we combine with other spectra to investigate its line-profile evolution. All epochs reveal narrow P Cygni components from pre-shock circumstellar material (CSM), indicating an axisymmetric outflow from the progenitor of 40-50 km s−1. Broad and intermediate-width components exhibit the classic evolution seen in luminous SNe IIn: symmetric Lorentzian profiles from pre-shock CSM lines broadened by electron scattering at early times, transitioning at late times to multicomponent, irregular profiles coming from the SN ejecta and post-shock shell. As in many SNe IIn, profiles show a progressively increasing blueshift, with a clear flux deficit in red wings of the intermediate and broad velocity components after day 200. This blueshift develops after the continuum luminosity fades, and in the intermediate-width component, persists at late times even after the SN ejecta fade. In SN 2017hcc, the blueshift cannot be explained as occultation by the SN photosphere, pre-shock acceleration of CSM, or a lopsided explosion of CSM. Instead, the blueshift arises from dust formation in the post-shock shell and in the SN ejecta. The effect has a wavelength dependence characteristic of dust, exhibiting an extinction law consistent with large grains. Thus, SN 2017hcc experienced post-shock dust formation and had a mildly bipolar CSM shell, similar to SN 2010jl. Like other superluminous SNe IIn, the progenitor lost around 10 M☉ due to extreme eruptive mass-loss in the decade before exploding.
Original language | English (US) |
---|---|
Pages (from-to) | 3544-3562 |
Number of pages | 19 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 499 |
Issue number | 3 |
DOIs | |
State | Published - Dec 1 2020 |
Keywords
- Binaries: general
- Outflows
- Stars: evolution
- Stars: massive
- Stars: winds
- Supernovae: general
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science