High-Resolution Receiver for the Single Aperture Large Telescope for Universe Studies

Jose R. Silva, Christopher Walker, Craig Kulesa, Abram Young, Jian Rong Gao, Qing Hu, Jeffrey Hesler, Anders Emrich, Paul Hartogh, Wouter Laauwen, Gert De Lange, Peter Rolfsema

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The High-Resolution Receiver (HiRX) is one of two instruments of the Single Aperture Large Telescope for Universe Studies (SALTUS), a mission proposed to NASA's 2023 Astrophysics Probe Explorer. SALTUS employs a 14 m aperture, leading to a 16-fold increase in collecting area and a factor of 4 increase in the angular resolution with respect to the Herschel Space Telescope. It will be radiatively cooled to ≤45 K and has a planned duration of >5 years. HiRX consists of four bands of cryogenic heterodyne receivers with a high sensitivity and high spectral resolution, being able to observe the gaseous components of objects across the far-IR. HiRX is going to detect water, HD, and other relevant astrophysical lines while resolving them in velocity. HiRX covers the following frequency ranges: Band 1 from 455 to 575 GHz, Band 2 from 1.1 to 2.1 THz, Band 3 from 2.475 to 2.875 THz, and Band 4 for both 4.744 and 5.35 THz. Bands 1 to 3 contain single, high-performance mixers. Band 4 consists of an array of seven hexagonally packed pixels, where the central pixel operates as a heterodyne mixer. Band 1 utilizes superconducting-insulator-superconducting mixers (SIS), whereas Bands 2 to 4 use superconducting hot electron bolometers (HEB) mixers. The local oscillator (LO) system uses frequency-multiplier chains for Bands 1 and 2, and quantum cascade lasers for Bands 3 and 4. Autocorrelator spectrometers are used to process the intermediate frequency (IF) signals from each science band, providing instantaneous frequency coverage of 4 to 8 GHz for Band 1 and 0.5 to 4 GHz for Bands 2 to 4. SALTUS will also fly a chirp transform spectrometer system for high spectral resolution observations in Band 1.

Original languageEnglish (US)
JournalJournal of Astronomical Telescopes, Instruments, and Systems
Volume10
Issue number4
DOIs
StatePublished - Oct 1 2024

Keywords

  • Far-infrared
  • HEB
  • HiRX
  • SALTUS
  • SIS
  • heterodyne
  • instrument

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Control and Systems Engineering
  • Instrumentation
  • Astronomy and Astrophysics
  • Mechanical Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'High-Resolution Receiver for the Single Aperture Large Telescope for Universe Studies'. Together they form a unique fingerprint.

Cite this