High Frequency Components of Hemodynamic Shear Stress Profiles are a Major Determinant of Shear-Mediated Platelet Activation in Therapeutic Blood Recirculating Devices

Filippo Consolo, Jawaad Sheriff, Silvia Gorla, Nicolo Magri, Danny Bluestein, Federico Pappalardo, Marvin J. Slepian, Gianfranco B. Fiore, Alberto Redaelli

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

We systematically analyzed the relative contributions of frequency component elements of hemodynamic shear stress waveforms encountered in cardiovascular blood recirculating devices as to overall platelet activation over time. We demonstrated that high frequency oscillations are the major determinants for priming, triggering and yielding activated "prothrombotic behavior" for stimulated platelets, even if the imparted shear stress has low magnitude and brief exposure time. Conversely, the low frequency components of the stress signal, with limited oscillations over time, did not induce significant activation, despite being of high magnitude and/or exposure time. In vitro data were compared with numerical predictions computed according to a recently proposed numerical model of shear-mediated platelet activation. The numerical model effectively resolved the correlation between platelet activation and the various frequency components examined. However, numerical predictions exhibited a different activation trend compared to experimental results for different time points of a stress activation sequence. With this study we provide a more fundamental understanding for the mechanobiological responsiveness of circulating platelets to the hemodynamic environment of cardiovascular devices, and the importance of these environments in mediating life-threatening thromboembolic complications associated with shear-mediated platelet activation. Experimental data will guide further optimization of the thromboresistance of cardiovascular implantable therapeutic devices.

Original languageEnglish (US)
Article number4994
JournalScientific reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'High Frequency Components of Hemodynamic Shear Stress Profiles are a Major Determinant of Shear-Mediated Platelet Activation in Therapeutic Blood Recirculating Devices'. Together they form a unique fingerprint.

Cite this