High-fat diet plus HNF1A variant promotes polyps by activating β-catenin in early-onset colorectal cancer

Heyu Song, Ricky A. Sontz, Matthew J. Vance, Julia M. Morris, Sulaiman Sheriff, Songli Zhu, Suzann Duan, Jiping Zeng, Erika Koeppe, Ritu Pandey, Curtis A. Thorne, Elena M. Stoffel, Juanita L. Merchant

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


The incidence of early-onset colorectal cancer (EO-CRC) is rising and is poorly understood. Lifestyle factors and altered genetic background possibly contribute. Here, we performed targeted exon sequencing of archived leukocyte DNA from 158 EO-CRC participants, which identified a missense mutation at p.A98V within the proximal DNA binding domain of Hepatic Nuclear Factor 1 α (HNF1AA98V, rs1800574). The HNF1AA98V exhibited reduced DNA binding. To test function, the HNF1A variant was introduced into the mouse genome by CRISPR/Cas9, and the mice were placed on either a high-fat diet (HFD) or high-sugar diet (HSD). Only 1% of the HNF1A mutant mice developed polyps on normal chow; however, 19% and 3% developed polyps on the HFD and HSD, respectively. RNA-Seq revealed an increase in metabolic, immune, lipid biogenesis genes, and Wnt/β-catenin signaling components in the HNF1A mutant relative to the WT mice. Mouse polyps and colon cancers from participants carrying the HNF1AA98V variant exhibited reduced CDX2 and elevated β-catenin proteins. We further demonstrated decreased occupancy of HNF1AA98V at the Cdx2 locus and reduced Cdx2 promoter activity compared with WT HNF1A. Collectively, our study shows that the HNF1AA98V variant plus a HFD promotes the formation of colonic polyps by activating β-catenin via decreasing Cdx2 expression.

Original languageEnglish (US)
Article numbere167163
JournalJCI Insight
Issue number13
StatePublished - 2023

ASJC Scopus subject areas

  • General Medicine


Dive into the research topics of 'High-fat diet plus HNF1A variant promotes polyps by activating β-catenin in early-onset colorectal cancer'. Together they form a unique fingerprint.

Cite this