TY - GEN
T1 - High accuracy DNS and les of high reynolds number, supersonic base flows and passive control of the near wake
AU - Von Terzi, D. A.
AU - Sandberg, R. D.
AU - Sivasubramanian, J.
AU - Fasel, H. F.
PY - 2005
Y1 - 2005
N2 - Supersonic axisymmetric base flows are prototypical for flows behind projectiles and missiles, For these flows, drag reduction can be achieved by means of passive control of the near wake. Thereby, large (turbulent) coherent structures play a dominant role. The objective of the present investigation is to elucidate if and how successful passive flow control techniques modify these structures. To this end, first Direct Numerical Simulations (DNS) for a Reynolds number of ReD = 100,000 and Mach number of Ma =2.46 were performed using a high-order accurate and highly parallelized research code which was developed at the University of Arizona. Thereby, roughly 52 million grid points were employed. The DNS data serve to visualize typical structures of the unsteady flow field and to verify that the use of less computational costly RANS/LES methods is applicable for this flow. Two of these methods, the Flow Simulation Methodology (FSM) and Detached Eddy Simulations (DES), were then employed to investigate the supersonic base flow at ReD =3.3 × 106 and Ma = 2.46 using between 460,000 and seven million grid points. For the DES, the commercial CFD-code Cobalt was employed. This unstructured grid solver allowed then to perform simulations with boat-tailing. The obtained mean flow data are compared to available experimental results.
AB - Supersonic axisymmetric base flows are prototypical for flows behind projectiles and missiles, For these flows, drag reduction can be achieved by means of passive control of the near wake. Thereby, large (turbulent) coherent structures play a dominant role. The objective of the present investigation is to elucidate if and how successful passive flow control techniques modify these structures. To this end, first Direct Numerical Simulations (DNS) for a Reynolds number of ReD = 100,000 and Mach number of Ma =2.46 were performed using a high-order accurate and highly parallelized research code which was developed at the University of Arizona. Thereby, roughly 52 million grid points were employed. The DNS data serve to visualize typical structures of the unsteady flow field and to verify that the use of less computational costly RANS/LES methods is applicable for this flow. Two of these methods, the Flow Simulation Methodology (FSM) and Detached Eddy Simulations (DES), were then employed to investigate the supersonic base flow at ReD =3.3 × 106 and Ma = 2.46 using between 460,000 and seven million grid points. For the DES, the commercial CFD-code Cobalt was employed. This unstructured grid solver allowed then to perform simulations with boat-tailing. The obtained mean flow data are compared to available experimental results.
UR - http://www.scopus.com/inward/record.url?scp=33947716899&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947716899&partnerID=8YFLogxK
U2 - 10.1109/DODUGC.2005.32
DO - 10.1109/DODUGC.2005.32
M3 - Conference contribution
AN - SCOPUS:33947716899
SN - 0769524966
SN - 9780769524962
T3 - Department of Defense High Performance Computing Modernization Program: Proceedings of the HPCMP Users Group Conference 2005
SP - 119
EP - 127
BT - DoD High Performance Computing Modernization Program
T2 - Department of Defense High Performance Computing Modernization Program: HPCMP Users Group Conference 2005
Y2 - 27 June 2005 through 30 June 2005
ER -