Abstract
The Henry's law constants, K(H), Of dilute aqueous formic and acetic acids were determined experimentally as a function of concentration and temperature using a new counterflow packed-column technique. K(H) was found to be (8.91 ± 1.3) x 103 and (4.1 ± 0.4) x 103 M atm-1 at 25°C for HCOOH and CH3COOH, respectively. The reaction enthalpies, ΔH, were found to be -51 ± 2 kJ mol-1 and -52 ± 1 kJ mol-1 formic and acetic acid, respectively. These are in good agreement for with calculated thermochemical values. Whereas the K(H) values are in reasonably good agreement with certain other experimentally determined values, K(H) (HCOOH) is two to three times higher than calculated thermochemical values while K(H) (CH3COOH) is lower than the two calculated values. The 'best' experimental values appear to be (11 ± 2) x 103 M atm-1 and (7 ± 3) x 103 M atm-1 for HCOOH and CH3COOH, respectively.
Original language | English (US) |
---|---|
Pages (from-to) | 113-119 |
Number of pages | 7 |
Journal | Journal of Atmospheric Chemistry |
Volume | 24 |
Issue number | 2 |
DOIs | |
State | Published - 1996 |
Keywords
- Acetic acid
- Carboxylic acids
- Formic acid
- Henry's law
ASJC Scopus subject areas
- Environmental Chemistry
- Atmospheric Science