Abstract
Significance: Changes in lipid, water, and collagen (LWC) content in tissue are associated with numerous medical abnormalities (cancer, atherosclerosis, and Alzheimer's disease). Standard imaging modalities are limited in resolution, specificity, and/or penetration for quantifying these changes. Short-wave infrared (SWIR) photoacoustic imaging (PAI) has the potential to overcome these challenges by exploiting the unique optical absorption properties of LWC > 1000 nm. Aim: This study's aim is to harness SWIR PAI for mapping LWC changes in tissue. The focus lies in devising a reflection-mode PAI technique that surmounts current limitations related to SWIR light delivery. Approach: To enhance light delivery for reflection-mode SWIR PAI, we designed a deuterium oxide (D2O, "heavy water") gelatin (HWG) interface for opto-acoustic coupling, intended to significantly improve light transmission above 1200 nm. Results: HWG permits light delivery >1 mJ up to 1850 nm, which was not possible with water-based coupling (>1 mJ light delivery up to 1350 nm). PAI using the HWG interface and the Visualsonics Vevo LAZR-X reveals a signal increase up to 24 dB at 1720 nm in lipid-rich regions. Conclusions: By overcoming barriers related to light penetration, the HWG coupling interface enables accurate quantification/monitoring of biomarkers like LWC using reflection-mode PAI. This technological stride offers potential for tracking changes in chronic diseases (in vivo) and evaluating their responses to therapeutic interventions.
Original language | English (US) |
---|---|
Article number | 116001 |
Journal | Journal of biomedical optics |
Volume | 28 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1 2023 |
Keywords
- cancer
- collagen
- heavy water
- high resolution ultrasound
- lipids
- optoacoustic imaging
- photoacoustic imaging and spectroscopy
- short-wave infrared
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Biomaterials
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering