TY - JOUR
T1 - Growth arrest- and polyamine-dependent expression of spermidine/spermine N1-acetyltransferase in human tumor cells
AU - Ignatenko, Natalia A.
AU - Gerner, Eugene W.
PY - 1996/4
Y1 - 1996/4
N2 - Polyamines are essential for optimal cell growth. The regulation of polyamine biosynthetic, but not catabolic, enzymes has been studied in detail. Because intracellular polyamine contents depend on both synthesis and catabolism, we studied the regulation of spermidine/spermine N1- acetyltransferase (N1SSAT), the first enzyme in polyamine catabolism. Steady-state RNA levels of N1SSAT increased 3-5 fold as human colon tumor- derived HCT116 cells traversed the log phase and entered the plateau phase. Depletion of cellular polyamines, using α-difluoromethylornithine, caused a decrease in the steady-state levels of both the 1.3-kb N1SSAT transcript and its 3.5-kb precursor, without affecting the stability of either RNA. N1SSAT enzyme activity was low in cells with normal polyamine contents but could be induced by heat shock. The level of induction of N1SSAT enzyme activity by heat shock on different days of growth correlated with N1SSAT RNA levels prior to heat shock and occurred without changes in levels of message after heat shock. Although non-heat-shocked cells containing normal polyamine contents expressed N1SSAT RNA but not enzyme activity, exogenous spermidine restored both RNA levels and enzyme activity in polyamine-depleted cells. This result suggests that the expression of N1SSAT enzyme activity, but not RNA, requires a change in the intracellular compartmentalization of spermidine. These data demonstrate that N1SSAT is regulated at both the transcriptional and posttranscriptional levels by conditions that arrest growth in HCT116 cells, and that both of these mechanisms are affected by endogenous polyamine contents.
AB - Polyamines are essential for optimal cell growth. The regulation of polyamine biosynthetic, but not catabolic, enzymes has been studied in detail. Because intracellular polyamine contents depend on both synthesis and catabolism, we studied the regulation of spermidine/spermine N1- acetyltransferase (N1SSAT), the first enzyme in polyamine catabolism. Steady-state RNA levels of N1SSAT increased 3-5 fold as human colon tumor- derived HCT116 cells traversed the log phase and entered the plateau phase. Depletion of cellular polyamines, using α-difluoromethylornithine, caused a decrease in the steady-state levels of both the 1.3-kb N1SSAT transcript and its 3.5-kb precursor, without affecting the stability of either RNA. N1SSAT enzyme activity was low in cells with normal polyamine contents but could be induced by heat shock. The level of induction of N1SSAT enzyme activity by heat shock on different days of growth correlated with N1SSAT RNA levels prior to heat shock and occurred without changes in levels of message after heat shock. Although non-heat-shocked cells containing normal polyamine contents expressed N1SSAT RNA but not enzyme activity, exogenous spermidine restored both RNA levels and enzyme activity in polyamine-depleted cells. This result suggests that the expression of N1SSAT enzyme activity, but not RNA, requires a change in the intracellular compartmentalization of spermidine. These data demonstrate that N1SSAT is regulated at both the transcriptional and posttranscriptional levels by conditions that arrest growth in HCT116 cells, and that both of these mechanisms are affected by endogenous polyamine contents.
UR - http://www.scopus.com/inward/record.url?scp=0029845022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029845022&partnerID=8YFLogxK
M3 - Article
C2 - 9052989
AN - SCOPUS:0029845022
SN - 1044-9523
VL - 7
SP - 481
EP - 486
JO - Cell Growth and Differentiation
JF - Cell Growth and Differentiation
IS - 4
ER -