TY - GEN
T1 - Group device pairing based secure sensor association and key management for body area networks
AU - Li, Ming
AU - Yu, Shucheng
AU - Lou, Wenjing
AU - Ren, Kui
PY - 2010
Y1 - 2010
N2 - Body Area Networks (BAN) is a key enabling technology in E-healthcare such as remote health monitoring. An important security issue during bootstrap phase of the BAN is to securely associate a group of sensor nodes to a patient, and generate necessary secret keys to protect the subsequent wireless communications. Due to the the ad hoc nature of the BAN and the extreme resource constraints of sensor devices, providing secure, fast, efficient and user-friendly secure sensor association is a challenging task. In this paper, we propose a lightweight scheme for secure sensor association and key management in BAN. A group of sensor nodes, having no prior shared secrets before they meet, establish initial trust through group device pairing (GDP), which is an authenticated group key agreement protocol where the legitimacy of each member node can be visually verified by a human. Various kinds of secret keys can be generated on demand after deployment. The GDP supports batch deployment of sensor nodes to save setup time, does not rely on any additional hardware devices, and is mostly based on symmetric key cryptography, while allowing batch node addition and revocation. We implemented GDP on a sensor network testbed and evaluated its performance. Experimental results show that that GDP indeed achieves the expected design goals.
AB - Body Area Networks (BAN) is a key enabling technology in E-healthcare such as remote health monitoring. An important security issue during bootstrap phase of the BAN is to securely associate a group of sensor nodes to a patient, and generate necessary secret keys to protect the subsequent wireless communications. Due to the the ad hoc nature of the BAN and the extreme resource constraints of sensor devices, providing secure, fast, efficient and user-friendly secure sensor association is a challenging task. In this paper, we propose a lightweight scheme for secure sensor association and key management in BAN. A group of sensor nodes, having no prior shared secrets before they meet, establish initial trust through group device pairing (GDP), which is an authenticated group key agreement protocol where the legitimacy of each member node can be visually verified by a human. Various kinds of secret keys can be generated on demand after deployment. The GDP supports batch deployment of sensor nodes to save setup time, does not rely on any additional hardware devices, and is mostly based on symmetric key cryptography, while allowing batch node addition and revocation. We implemented GDP on a sensor network testbed and evaluated its performance. Experimental results show that that GDP indeed achieves the expected design goals.
UR - http://www.scopus.com/inward/record.url?scp=77953304550&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953304550&partnerID=8YFLogxK
U2 - 10.1109/INFCOM.2010.5462095
DO - 10.1109/INFCOM.2010.5462095
M3 - Conference contribution
AN - SCOPUS:77953304550
SN - 9781424458363
T3 - Proceedings - IEEE INFOCOM
BT - 2010 Proceedings IEEE INFOCOM
T2 - IEEE INFOCOM 2010
Y2 - 14 March 2010 through 19 March 2010
ER -