Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover

James C. Stegen, James K. Fredrickson, Michael J. Wilkins, Allan E. Konopka, William C. Nelson, Evan V. Arntzen, William B. Chrisler, Rosalie K. Chu, Robert E. Danczak, Sarah J. Fansler, David W. Kennedy, Charles T. Resch, Malak Tfaily

Research output: Contribution to journalArticlepeer-review

284 Scopus citations

Abstract

Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds.

Original languageEnglish (US)
Article number11237
JournalNature communications
Volume7
DOIs
StatePublished - Apr 7 2016
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover'. Together they form a unique fingerprint.

Cite this