Ground-state properties of 4He and 16O extrapolated from lattice QCD with pionless EFT

L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher, U. van Kolck

Research output: Contribution to journalArticlepeer-review

61 Scopus citations


We extend the prediction range of Pionless Effective Field Theory with an analysis of the ground state of 16O in leading order. To renormalize the theory, we use as input both experimental data and lattice QCD predictions of nuclear observables, which probe the sensitivity of nuclei to increased quark masses. The nuclear many-body Schrödinger equation is solved with the Auxiliary Field Diffusion Monte Carlo method. For the first time in a nuclear quantum Monte Carlo calculation, a linear optimization procedure, which allows us to devise an accurate trial wave function with a large number of variational parameters, is adopted. The method yields a binding energy of 4He which is in good agreement with experiment at physical pion mass and with lattice calculations at larger pion masses. At leading order we do not find any evidence of a 16O state which is stable against breakup into four 4He, although higher-order terms could bind 16O.

Original languageEnglish (US)
Pages (from-to)839-848
Number of pages10
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
StatePublished - Sep 10 2017

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Ground-state properties of 4He and 16O extrapolated from lattice QCD with pionless EFT'. Together they form a unique fingerprint.

Cite this