GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A∗

Lia Medeiros, Chi Kwan Chan, Feryal Özel, Dimitrios Psaltis, Junhan Kim, Daniel P. Marrone, Aleksander Sadowski

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


The Event Horizon Telescope will generate horizon scale images of the black hole in the center of the Milky Way, Sgr A∗. Image reconstruction using interferometric visibilities rests on the assumption of a stationary image. We explore the limitations of this assumption using high-cadence disk- and jet-dominated GRMHD simulations of Sgr A∗. We also employ analytic models that capture the basic characteristics of the images to understand the origin of the variability in the simulated visibility amplitudes. We find that, in all simulations, the visibility amplitudes for baselines oriented parallel and perpendicular to the spin axis of the black hole follow general trends that do not depend strongly on accretion-flow properties. This suggests that fitting Event Horizon Telescope observations with simple geometric models may lead to a reasonably accurate determination of the orientation of the black hole on the plane of the sky. However, in the disk-dominated models, the locations and depths of the minima in the visibility amplitudes are highly variable and are not related simply to the size of the black hole shadow. This suggests that using time-independent models to infer additional black hole parameters, such as the shadow size or the spin magnitude, will be severely affected by the variability of the accretion flow.

Original languageEnglish (US)
Article number163
JournalAstrophysical Journal
Issue number2
StatePublished - Apr 1 2018


  • Galaxy: center
  • accretion, accretion disks
  • black hole physics
  • radiative transfer

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A∗'. Together they form a unique fingerprint.

Cite this