GPU-accelerated generic analytic simulation and image reconstruction platform for multi-pinhole SPECT systems

Navid Zeraatkar, Benjamin Auer, Kesava Kalluri, Lars R. Furenlid, Philip H. Kuo, Michael A. King

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

We introduce a generic analytic simulation and image reconstruction software platform for multi-pinhole (MPH) SPECT systems. The platform is capable of modeling common or sophisticated MPH designs as well as complex data acquisition schemes. Graphics processing unit (GPU) acceleration was utilized to make a high-performance computing software. Herein, we describe the software platform and provide verification studies of the simulation and image reconstruction software.

Original languageEnglish (US)
Title of host publication15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine
EditorsSamuel Matej, Scott D. Metzler
PublisherSPIE
ISBN (Electronic)9781510628373
DOIs
StatePublished - 2019
Event15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Fully3D 2019 - Philadelphia, United States
Duration: Jun 2 2019Jun 6 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11072
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Fully3D 2019
Country/TerritoryUnited States
CityPhiladelphia
Period6/2/196/6/19

Keywords

  • Analytic simulation
  • GPU
  • Image reconstruction
  • Multi-pinhole
  • Parallel programming
  • Pinhole
  • SPECT

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'GPU-accelerated generic analytic simulation and image reconstruction platform for multi-pinhole SPECT systems'. Together they form a unique fingerprint.

Cite this