Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes

Ricky Malhotra, Frank C. Brosius

Research output: Contribution to journalArticlepeer-review

199 Scopus citations


Myocardial ischemia/reperfusion is well recognized as a major cause of apoptotic or necrotic cell death. Neonatal rat cardiac myocytes are intrinsically resistant to hypoxia-induced apoptosis, suggesting a protective role of energy-generating substrates. In the present report, a model of sustained hypoxia of primary cultures of Percoll-enriched neonatal rat cardiac myocytes was used to study specifically the modulatory role of extracellular glucose and other intermediary substrates of energy metabolism (pyruvate, lactate, propionate) as well as glycolytic inhibitors (2- deoxyglucose and iodoacetate) on the induction and maintenance of apoptosis. In the absence of glucose and other substrates, hypoxia (5% CO2 and 95% N2) caused apoptosis in 14% of cardiac myocytes at 3 h and in 22% of cells at 6- 8 h of hypoxia, as revealed by sarcolemmal membrane blebbing, nuclear fragmentation, and chromatin condensation (Hoechst staining), terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and DNA laddering. This was accompanied by translocation of cytochrome c from the mitochondria to the cytosol and cleavage of the death substrate poly(ADP-ribose) polymerase. Cleavage of poly(ADP-ribose) polymerase and DNA laddering were prevented by preincubation with the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (zDEVD-fmk), indicating activation of caspases in the apoptotic process. The caspase inhibitor zDEVD- fmk also partially inhibited cytochrome c translocation. The presence of as little as 1 mM glucose, but not pyruvate, lactate, or propionate, before hypoxia prevented apoptosis. Inhibiting glycolysis by 2-deoxyglucose or iodoacetate, in the presence of glucose, reversed the protective effect of glucose. This study demonstrates that glycolysis of extracellular glucose, and not other metabolic pathways, protects cardiac myocytes from hypoxic injury and subsequent apoptosis.

Original languageEnglish (US)
Pages (from-to)12567-12575
Number of pages9
JournalJournal of Biological Chemistry
Issue number18
StatePublished - Apr 30 1999
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes'. Together they form a unique fingerprint.

Cite this