Glucose-independent human cytomegalovirus replication is supported by metabolites that feed upper glycolytic branches

Rebekah L. Mokry, John G. Purdy

Research output: Contribution to journalArticlepeer-review

Abstract

Viruses with broad tissue distribution and cell tropism successfully replicate in various nutrient environments in the body. Several viruses reprogram metabolism for viral replication. However, many studies focus on metabolic reprogramming in nutrient-rich conditions that do not recapitulate physiological environments in the body. Here, we investigated how viruses may replicate when a metabolite thought to be essential for replication is limited. We use human cytomegalovirus infection in glucose-free conditions as a model to determine how glucose supports virus replication and how physiologically relevant nutrients contribute to glucose-independent virus production. We find that glucose supports viral genome synthesis, viral protein production and glycosylation, and infectious virus production. Notably, supplement of glucose-free cultures with uridine, ribose, or UDP-GlcNAc—metabolites that feed upper glycolytic branches like the pentose phosphate pathway—results in partially restored virus replication, including low levels of infectious virus production. Supplementing lower glycolysis in glucose-free cultures using pyruvate fails to restore virus replication. These results indicate that nutrients can compensate for glucose via feeding upper glycolytic branches to sustain low levels of virus production. More broadly, our findings suggest that viruses may successfully replicate in diverse metabolic niches, including those in the body with low glucose levels, through alternative nutrient usage.

Original languageEnglish (US)
Article numbere2412966121
JournalProceedings of the National Academy of Sciences of the United States of America
Volume121
Issue number48
DOIs
StatePublished - Nov 26 2024

Keywords

  • glycolysis
  • herpesviruses
  • human cytomegalovirus
  • metabolism

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Glucose-independent human cytomegalovirus replication is supported by metabolites that feed upper glycolytic branches'. Together they form a unique fingerprint.

Cite this