Global critical soil moisture thresholds of plant water stress

Zheng Fu, Philippe Ciais, Jean Pierre Wigneron, Pierre Gentine, Andrew F. Feldman, David Makowski, Nicolas Viovy, Armen R. Kemanian, Daniel S. Goll, Paul C. Stoy, Iain Colin Prentice, Dan Yakir, Liyang Liu, Hongliang Ma, Xiaojun Li, Yuanyuan Huang, Kailiang Yu, Peng Zhu, Xing Li, Zaichun ZhuJinghui Lian, William K. Smith

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

During extensive periods without rain, known as dry-downs, decreasing soil moisture (SM) induces plant water stress at the point when it limits evapotranspiration, defining a critical SM threshold (θcrit). Better quantification of θcrit is needed for improving future projections of climate and water resources, food production, and ecosystem vulnerability. Here, we combine systematic satellite observations of the diurnal amplitude of land surface temperature (dLST) and SM during dry-downs, corroborated by in-situ data from flux towers, to generate the observation-based global map of θcrit. We find an average global θcrit of 0.19 m3/m3, varying from 0.12 m3/m3 in arid ecosystems to 0.26 m3/m3 in humid ecosystems. θcrit simulated by Earth System Models is overestimated in dry areas and underestimated in wet areas. The global observed pattern of θcrit reflects plant adaptation to soil available water and atmospheric demand. Using explainable machine learning, we show that aridity index, leaf area and soil texture are the most influential drivers. Moreover, we show that the annual fraction of days with water stress, when SM stays below θcrit, has increased in the past four decades. Our results have important implications for understanding the inception of water stress in models and identifying SM tipping points.

Original languageEnglish (US)
Article number4826
JournalNature communications
Volume15
Issue number1
DOIs
StatePublished - Dec 2024

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Global critical soil moisture thresholds of plant water stress'. Together they form a unique fingerprint.

Cite this