Geometric Deformations of the Thoracic Aorta and Supra-Aortic Arch Branch Vessels Following Thoracic Endovascular Aortic Repair

Brant W. Ullery, Ga Young Suh, Kelsey Hirotsu, David Zhu, Jason T. Lee, Michael D. Dake, Dominik Fleischmann, Christopher P. Cheng

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Objective: To utilize 3-D modeling techniques to better characterize geometric deformations of the supra-aortic arch branch vessels and descending thoracic aorta after thoracic endovascular aortic repair. Methods: Eighteen patients underwent endovascular repair of either type B aortic dissection (n = 10) or thoracic aortic aneurysm (n = 8). Computed tomography angiography was obtained pre- and postprocedure, and 3-D geometric models of the aorta and supra-aortic branch vessels were constructed. Branch angle of the supra-aortic branch vessels and curvature metrics of the ascending aorta, aortic arch, and stented thoracic aortic lumen were calculated both at pre- and postintervention. Results: The left common carotid artery branch angle was lower than the left subclavian artery angles preintervention (P <.005) and lower than both the left subclavian and brachiocephalic branch angles postintervention (P <.05). From pre- to postoperative, no significant change in branch angle was found in any of the great vessels. Maximum curvature change of the stented lumen from pre- to postprocedure was greater than those of the ascending aorta and aortic arch (P <.05). Conclusion: Thoracic endovascular aortic repair results in relative straightening of the stented aortic region and also accentuates the native curvature of the ascending aorta when the endograft has a more proximal landing zone. Supra-aortic branch vessel angulation remains relatively static when proximal landing zones are distal to the left common carotid artery.

Original languageEnglish (US)
Pages (from-to)173-180
Number of pages8
JournalVascular and endovascular surgery
Volume52
Issue number3
DOIs
StatePublished - Apr 1 2018
Externally publishedYes

Keywords

  • aortic aneurysm
  • aortic arch
  • aortic dissection
  • geometric deformation
  • supra-aortic arch
  • thoracic endovascular aortic repair
  • vessel geometry

ASJC Scopus subject areas

  • Surgery
  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Geometric Deformations of the Thoracic Aorta and Supra-Aortic Arch Branch Vessels Following Thoracic Endovascular Aortic Repair'. Together they form a unique fingerprint.

Cite this