TY - JOUR
T1 - Genome-wide association study of a thermo-tolerance indicator in pregnant ewes exposed to an artificial heat-stressed environment
AU - Luna-Nevárez, Guillermo
AU - Pendleton, Alexander L.
AU - Luna-Ramirez, Rosa I.
AU - Limesand, Sean W.
AU - Reyna-Granados, Javier R.
AU - Luna-Nevárez, Pablo
N1 - Funding Information:
This project was funded by PROFAPI-ITSON Grant Program (2020) and The University of Arizona NIFA Multi State Project W3112 .
Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/10
Y1 - 2021/10
N2 - Environmental heat stress negatively influences sheep production in warm semi-arid regions. An animal's ability to tolerate warm weather is difficult to measure naturally due to environmental variability and genetic variation between animals. In this study we developed a thermo-tolerance indicator (TTI) to define heat stress tolerance in pregnant sheep in a controlled environment. Next, we performed a genome-wide association study (GWAS) to identify genomic regions and target genes associated with thermo-tolerance in sheep. Pregnant Columbia-Rambouillet crossbred ewes (n = 127) were heat-stressed inside a climate-controlled chamber for 57 days by increasing the temperature-humidity index to ≥30. Rectal temperature (RT) and feed intake (FI) data were collected daily and used for the predictive TTI analysis. After the tenth day of heat stress, the regression analyses revealed that FI was stable; however, when the ewe's RT exceeded 39.8 °C their FI was less than thermo-tolerant ewes. This average predicted temperature was used to classify each ewe as heat stress tolerant (≤39.8 °C) and non-heat stress tolerant (>39.8 °C). A GWAS analysis was performed and genomic regions were compared between heat stress tolerant and non-tolerant ewes. The single-marker genomic analysis detected 16 single nucleotide polymorphisms (SNP) associated with heat stress tolerance (P < 0.0001), whereas the multi-marker Bayesian analysis identified 8 overlapped 1-Mb chromosomal regions accounting for 11.39% of the genetic variation associated with tolerance to heat stress. Four intragenic SNP showed a remarkable contribution to thermo-tolerance, and these markers were within the genes FBXO11 (rs407804467), PHC3 (rs414179061), TSHR (rs418575898) and STAT1 (rs417581105). In conclusion, genomic regions harboring four intragenic SNP were associated with heat stress tolerance, and these candidate genes are proposed to influence heat tolerance in pregnant ewes subjected to an artificially induced warm climate. Moreover, these genetic markers could be suitable for use in further genetic selection programs in sheep managed in semi-arid regions.
AB - Environmental heat stress negatively influences sheep production in warm semi-arid regions. An animal's ability to tolerate warm weather is difficult to measure naturally due to environmental variability and genetic variation between animals. In this study we developed a thermo-tolerance indicator (TTI) to define heat stress tolerance in pregnant sheep in a controlled environment. Next, we performed a genome-wide association study (GWAS) to identify genomic regions and target genes associated with thermo-tolerance in sheep. Pregnant Columbia-Rambouillet crossbred ewes (n = 127) were heat-stressed inside a climate-controlled chamber for 57 days by increasing the temperature-humidity index to ≥30. Rectal temperature (RT) and feed intake (FI) data were collected daily and used for the predictive TTI analysis. After the tenth day of heat stress, the regression analyses revealed that FI was stable; however, when the ewe's RT exceeded 39.8 °C their FI was less than thermo-tolerant ewes. This average predicted temperature was used to classify each ewe as heat stress tolerant (≤39.8 °C) and non-heat stress tolerant (>39.8 °C). A GWAS analysis was performed and genomic regions were compared between heat stress tolerant and non-tolerant ewes. The single-marker genomic analysis detected 16 single nucleotide polymorphisms (SNP) associated with heat stress tolerance (P < 0.0001), whereas the multi-marker Bayesian analysis identified 8 overlapped 1-Mb chromosomal regions accounting for 11.39% of the genetic variation associated with tolerance to heat stress. Four intragenic SNP showed a remarkable contribution to thermo-tolerance, and these markers were within the genes FBXO11 (rs407804467), PHC3 (rs414179061), TSHR (rs418575898) and STAT1 (rs417581105). In conclusion, genomic regions harboring four intragenic SNP were associated with heat stress tolerance, and these candidate genes are proposed to influence heat tolerance in pregnant ewes subjected to an artificially induced warm climate. Moreover, these genetic markers could be suitable for use in further genetic selection programs in sheep managed in semi-arid regions.
KW - Heat stress
KW - Molecular markers
KW - SNP
KW - Sheep
KW - Thermo-tolerance indicator
UR - http://www.scopus.com/inward/record.url?scp=85115746178&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115746178&partnerID=8YFLogxK
U2 - 10.1016/j.jtherbio.2021.103095
DO - 10.1016/j.jtherbio.2021.103095
M3 - Article
C2 - 34879913
AN - SCOPUS:85115746178
SN - 0306-4565
VL - 101
JO - Journal of Thermal Biology
JF - Journal of Thermal Biology
M1 - 103095
ER -