Genome editing retraces the evolution of toxin resistance in the monarch butterfly

Marianthi Karageorgi, Simon C. Groen, Fidan Sumbul, Julianne N. Pelaez, Kirsten I. Verster, Jessica M. Aguilar, Amy P. Hastings, Susan L. Bernstein, Teruyuki Matsunaga, Michael Astourian, Geno Guerra, Felix Rico, Susanne Dobler, Anurag A. Agrawal, Noah K. Whiteman

Research output: Contribution to journalArticlepeer-review

111 Scopus citations

Abstract

Identifying the genetic mechanisms of adaptation requires the elucidation of links between the evolution of DNA sequence, phenotype, and fitness1. Convergent evolution can be used as a guide to identify candidate mutations that underlie adaptive traits2–4, and new genome editing technology is facilitating functional validation of these mutations in whole organisms1,5. We combined these approaches to study a classic case of convergence in insects from six orders, including the monarch butterfly (Danaus plexippus), that have independently evolved to colonize plants that produce cardiac glycoside toxins6–11. Many of these insects evolved parallel amino acid substitutions in the α-subunit (ATPα) of the sodium pump (Na+/K+-ATPase)7–11, the physiological target of cardiac glycosides12. Here we describe mutational paths involving three repeatedly changing amino acid sites (111, 119 and 122) in ATPα that are associated with cardiac glycoside specialization13,14. We then performed CRISPR–Cas9 base editing on the native Atpα gene in Drosophila melanogaster flies and retraced the mutational path taken across the monarch lineage11,15. We show in vivo, in vitro and in silico that the path conferred resistance and target-site insensitivity to cardiac glycosides16, culminating in triple mutant ‘monarch flies’ that were as insensitive to cardiac glycosides as monarch butterflies. ‘Monarch flies’ retained small amounts of cardiac glycosides through metamorphosis, a trait that has been optimized in monarch butterflies to deter predators17–19. The order in which the substitutions evolved was explained by amelioration of antagonistic pleiotropy through epistasis13,14,20–22. Our study illuminates how the monarch butterfly evolved resistance to a class of plant toxins, eventually becoming unpalatable, and changing the nature of species interactions within ecological communities2,6–11,15,17–19.

Original languageEnglish (US)
Pages (from-to)409-412
Number of pages4
JournalNature
Volume574
Issue number7778
DOIs
StatePublished - Oct 17 2019

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Genome editing retraces the evolution of toxin resistance in the monarch butterfly'. Together they form a unique fingerprint.

Cite this