Generation of achromatic, uniform-phase, radially polarized beams

Toshitaka Wakayama, Oscar G. Rodríguez-Herrera, J. Scott Tyo, Yukitoshi Otani, Motoki Yonemura, Toru Yoshizawa

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Axially symmetric half-wave plates have been used to generate radially polarized beams that have constant phase in the plane transverse to propagation. However, since the retardance introduced by these waveplates depends on the wavelength, it is difficult to generate radially polarized beams achromatically. This paper describes a technique suitable for the generation of achromatic, radially polarized beams with uniform phase. The generation system contains, among other optical components, an achromatic, axially symmetric quarter-wave plate based on total internal reflection. For an incident beam with a constant phase distribution, the system generates a beam with an extra geometrical phase term. To generate a beam with the correct phase distribution, it is therefore necessary to have an incident optical vortex with an azimuthally varying phase distribution of the form exp( + i?). We show theoretically that the phase component of radially polarized beam is canceled out by the phase component of the incident optical vortex, resulting in a radially polarized beam with uniform phase. Additionally, we present an experimental setup able to generate the achromatic, uniform-phase, radially polarized beam and experimental results that confirm that the generated beam has the correct phase distribution.

Original languageEnglish (US)
Pages (from-to)3306-3315
Number of pages10
JournalOptics Express
Issue number3
StatePublished - Feb 10 2014

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Generation of achromatic, uniform-phase, radially polarized beams'. Together they form a unique fingerprint.

Cite this