Gauging variational inference

Sungsoo Ahn, Michael Chertkov, Jinwoo Shin

Research output: Contribution to journalConference articlepeer-review

4 Scopus citations

Abstract

Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used in practice, where mean-field (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments indeed confirm that the proposed algorithms outperform and generalize MF and BP.

Original languageEnglish (US)
Pages (from-to)2882-2891
Number of pages10
JournalAdvances in Neural Information Processing Systems
Volume2017-December
StatePublished - 2017
Externally publishedYes
Event31st Annual Conference on Neural Information Processing Systems, NIPS 2017 - Long Beach, United States
Duration: Dec 4 2017Dec 9 2017

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Gauging variational inference'. Together they form a unique fingerprint.

Cite this