@inproceedings{66fef740e708470c85024d6ed42d0837,
title = "Gain determination of non-linear IR detectors with the differential photon transfer curve (dPTC) method",
abstract = "Conversion gain is a basic detector property which relates the raw counts in a pixel in data numbers (DN) to the number of electrons detected. The standard method for determining the gain is called the Photon Transfer Curve (PTC) method and involves the measurement the change in variance as a function of signal level. For non-linear IR detectors, this method depends strongly on the non-linearity correction and is therefore susceptible to systematic biases due to calibration issues. We have developed a new, robust, and fast method, the differential Photon Transfer Curve (dPTC) method, which is independent of non-linearity corrections, but still delivers gain values similar in precision but higher in accuracy.",
keywords = "Gain, JWST, NIR detectors, NIRCam",
author = "Armin Rest and Bryan Hilbert and Leisenring, {Jarron M.} and Karl Misselt and Marcia Rieke and Massimo Robberto",
note = "Publisher Copyright: {\textcopyright} 2016 SPIE.; Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave ; Conference date: 26-06-2016 Through 01-07-2016",
year = "2016",
doi = "10.1117/12.2233203",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "MacEwen, {Howard A.} and Makenzie Lystrup and Fazio, {Giovanni G.}",
booktitle = "Space Telescopes and Instrumentation 2016",
}