TY - JOUR
T1 - Fundamental Limits of Optical Tweezer Nanoparticle Manipulation Speeds
AU - Melzer, Jeffrey E.
AU - McLeod, Euan
N1 - Funding Information:
This work was supported by the University of Arizona Office of Research and Discovery, the Arizona Technology and Research Initiative Fund, and the University of Arizona College of Optical Sciences.
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/3/27
Y1 - 2018/3/27
N2 - Optical tweezers are a noncontact method of 3D positioning applicable to the fields of micro- and nanomanipulation and assembly, among others. In these applications, the ability to manipulate particles over relatively long distances at high speed is essential in determining overall process efficiency and throughput. In order to maximize manipulation speeds, it is necessary to increase the trapping laser power, which is often accompanied by undesirable heating effects due to material absorption. As such, the majority of previous studies focus primarily on trapping large dielectric microspheres using slow movement speeds at low laser powers, over relatively short translation distances. In contrast, we push nanoparticle manipulation beyond the region in which maximum lateral movement speed is linearly proportional to laser power, and investigate the fundamental limits imposed by material absorption, thus quantifying maximum possible speeds attainable with optical tweezers. We find that gold and silver nanospheres of diameter 100 nm are limited to manipulation speeds of ∼0.15 mm/s, while polystyrene spheres of diameter 160 nm can reach speeds up to ∼0.17 mm/s, over distances ranging from 0.1 to 1 mm. When the laser power is increased beyond the values used for these maximum manipulation speeds, the nanoparticles are no longer stably trapped in 3D due to weak confinement as a result of material absorption, heating, microbubble formation, and enhanced Brownian motion. We compared this result to our theoretical model, incorporating optical forces in the Rayleigh regime, Stokes' drag, and absorption effects, and found good agreement. These results show that optical tweezers can be fast enough to compete with other common, serial rapid prototyping and nanofabrication approaches.
AB - Optical tweezers are a noncontact method of 3D positioning applicable to the fields of micro- and nanomanipulation and assembly, among others. In these applications, the ability to manipulate particles over relatively long distances at high speed is essential in determining overall process efficiency and throughput. In order to maximize manipulation speeds, it is necessary to increase the trapping laser power, which is often accompanied by undesirable heating effects due to material absorption. As such, the majority of previous studies focus primarily on trapping large dielectric microspheres using slow movement speeds at low laser powers, over relatively short translation distances. In contrast, we push nanoparticle manipulation beyond the region in which maximum lateral movement speed is linearly proportional to laser power, and investigate the fundamental limits imposed by material absorption, thus quantifying maximum possible speeds attainable with optical tweezers. We find that gold and silver nanospheres of diameter 100 nm are limited to manipulation speeds of ∼0.15 mm/s, while polystyrene spheres of diameter 160 nm can reach speeds up to ∼0.17 mm/s, over distances ranging from 0.1 to 1 mm. When the laser power is increased beyond the values used for these maximum manipulation speeds, the nanoparticles are no longer stably trapped in 3D due to weak confinement as a result of material absorption, heating, microbubble formation, and enhanced Brownian motion. We compared this result to our theoretical model, incorporating optical forces in the Rayleigh regime, Stokes' drag, and absorption effects, and found good agreement. These results show that optical tweezers can be fast enough to compete with other common, serial rapid prototyping and nanofabrication approaches.
KW - laser heating
KW - manipulation
KW - nanoassembly
KW - nanoparticles
KW - Optical tweezers
UR - http://www.scopus.com/inward/record.url?scp=85044511187&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044511187&partnerID=8YFLogxK
U2 - 10.1021/acsnano.7b07914
DO - 10.1021/acsnano.7b07914
M3 - Article
C2 - 29400940
AN - SCOPUS:85044511187
SN - 1936-0851
VL - 12
SP - 2440
EP - 2447
JO - ACS Nano
JF - ACS Nano
IS - 3
ER -