TY - JOUR
T1 - Functional genomics of chicken, mouse, and human titin supports splice diversity as an important mechanism for regulating biomechanics of striated muscle
AU - Granzier, Henk
AU - Radke, Michael
AU - Royal, Joseph
AU - Wu, Yiming
AU - Irving, Thomas C.
AU - Gotthardt, Michael
AU - Labeit, Siegfried
PY - 2007/8
Y1 - 2007/8
N2 - Titin is a giant filamentous elastic protein that spans from the Z-disk to M-band regions of the sarcomere. The I-band region of titin is extensible and develops passive force in stretched sarcomeres. This force has been implicated as a factor involved in regulating cardiac contraction. To better understand the adaptation in the extensible region of titin, we report the sequence and annotation of the chicken and mouse titin genes and compare them to the human titin gene. Our results reveal a high degree of conservation within the genomic region encoding the A-band segment of titin, consistent with the structural similarity of vertebrate A-bands. In contrast, the genomic region encoding the Z-disk and I-band segments is highly divergent. This is most prominent within the central I-band segment, where chicken titin has fewer but larger PEVK exons (up to 1,992 bp). Furthermore, in mouse titin we found two LINE repeats that are inserted in the Z-disk and I-band regions, the regions that account for most of the splice isoform diversity. Transcript studies show that a group of 55 I-band exons is differentially expressed in chicken titin. Consistent with a large degree of titin isoform plasticity and variation in PEVK content, chicken skeletal titins range in size from ∼3,000 to ∼3,700 kDa and vary greatly in passive mechanical properties. Low-angle X-ray diffraction experiments reveal significant differences in myofilament lattice spacing that correlate with titin isoform expression. We conclude that titin splice diversity regulates structure and biomechanics of the sarcomere.
AB - Titin is a giant filamentous elastic protein that spans from the Z-disk to M-band regions of the sarcomere. The I-band region of titin is extensible and develops passive force in stretched sarcomeres. This force has been implicated as a factor involved in regulating cardiac contraction. To better understand the adaptation in the extensible region of titin, we report the sequence and annotation of the chicken and mouse titin genes and compare them to the human titin gene. Our results reveal a high degree of conservation within the genomic region encoding the A-band segment of titin, consistent with the structural similarity of vertebrate A-bands. In contrast, the genomic region encoding the Z-disk and I-band segments is highly divergent. This is most prominent within the central I-band segment, where chicken titin has fewer but larger PEVK exons (up to 1,992 bp). Furthermore, in mouse titin we found two LINE repeats that are inserted in the Z-disk and I-band regions, the regions that account for most of the splice isoform diversity. Transcript studies show that a group of 55 I-band exons is differentially expressed in chicken titin. Consistent with a large degree of titin isoform plasticity and variation in PEVK content, chicken skeletal titins range in size from ∼3,000 to ∼3,700 kDa and vary greatly in passive mechanical properties. Low-angle X-ray diffraction experiments reveal significant differences in myofilament lattice spacing that correlate with titin isoform expression. We conclude that titin splice diversity regulates structure and biomechanics of the sarcomere.
KW - Comparative genomics
KW - Connectin
KW - Exon-intron structure
KW - Isoform expression
UR - http://www.scopus.com/inward/record.url?scp=34547629201&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34547629201&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00001.2007
DO - 10.1152/ajpregu.00001.2007
M3 - Review article
C2 - 17522126
AN - SCOPUS:34547629201
SN - 0363-6119
VL - 293
SP - R557-R567
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 2
ER -