TY - JOUR
T1 - Functional expression of organic anion transporting polypeptide 1a4 Is regulated by transforming growth factor-β/Activin receptor-like kinase 1 signaling at the blood-brain barrier
AU - Abdullahi, Wazir
AU - Brzica, Hrvoje
AU - Hirsch, Nicholas A.
AU - Reilly, Bianca G.
AU - Ronaldson, Patrick T.
N1 - Publisher Copyright:
Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
PY - 2018/12
Y1 - 2018/12
N2 - Central nervous system (CNS) drug delivery can be achieved by targeting drug uptake transporters such as Oatp1a4. In fact, many drugs that can improve neurologic outcomes in CNS diseases [3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (i.e., statins)] are organic anion transporting polypeptide (OATP) transport substrates. To date, transport properties and regulatory mechanisms of Oatp1a4 at the blood-brain barrier (BBB) have not been rigorously studied. Such knowledge is critical to develop Oatp1a4 for optimization of CNS drug delivery and for improved treatment of neurological diseases. Our laboratory has demonstrated that the transforming growth factor-β (TGF-β)/activin receptor-like kinase 1 (ALK1) signaling agonist bone morphogenetic protein 9 (BMP-9) increases functional expression of Oatp1a4 in rat brain microvessels. Here, we expand on this work and show that BMP-9 treatment increases blood-to-brain transport and brain exposure of established OATP transport substrates (i.e., taurocholate, atorvastatin, and pravastatin). We also demonstrate that BMP-9 activates the TGF-β/ALK1 pathway in brain microvessels as indicated by increased nuclear translocation of specific Smad proteins associated with signaling mediated by the ALK1 receptor (i.e., pSmad1/5/8). Furthermore, we report that an activated Smad protein complex comprised of phosphorylated Smad1/5/8 and Smad4 is formed following BMP-9 treatment and binds to the promoter of the Slco1a4 gene (i.e., the gene that encodes Oatp1a4). This signaling mechanism causes increased expression of Slco1a4 mRNA. Overall, this study provides evidence that Oatp1a4 transport activity at the BBB is directly regulated by TGF-β/ALK1 signaling and indicates that this pathway can be targeted for control of CNS delivery of OATP substrate drugs.
AB - Central nervous system (CNS) drug delivery can be achieved by targeting drug uptake transporters such as Oatp1a4. In fact, many drugs that can improve neurologic outcomes in CNS diseases [3-hydroxy-3-methylglutaryl-CoA reductase inhibitors (i.e., statins)] are organic anion transporting polypeptide (OATP) transport substrates. To date, transport properties and regulatory mechanisms of Oatp1a4 at the blood-brain barrier (BBB) have not been rigorously studied. Such knowledge is critical to develop Oatp1a4 for optimization of CNS drug delivery and for improved treatment of neurological diseases. Our laboratory has demonstrated that the transforming growth factor-β (TGF-β)/activin receptor-like kinase 1 (ALK1) signaling agonist bone morphogenetic protein 9 (BMP-9) increases functional expression of Oatp1a4 in rat brain microvessels. Here, we expand on this work and show that BMP-9 treatment increases blood-to-brain transport and brain exposure of established OATP transport substrates (i.e., taurocholate, atorvastatin, and pravastatin). We also demonstrate that BMP-9 activates the TGF-β/ALK1 pathway in brain microvessels as indicated by increased nuclear translocation of specific Smad proteins associated with signaling mediated by the ALK1 receptor (i.e., pSmad1/5/8). Furthermore, we report that an activated Smad protein complex comprised of phosphorylated Smad1/5/8 and Smad4 is formed following BMP-9 treatment and binds to the promoter of the Slco1a4 gene (i.e., the gene that encodes Oatp1a4). This signaling mechanism causes increased expression of Slco1a4 mRNA. Overall, this study provides evidence that Oatp1a4 transport activity at the BBB is directly regulated by TGF-β/ALK1 signaling and indicates that this pathway can be targeted for control of CNS delivery of OATP substrate drugs.
UR - http://www.scopus.com/inward/record.url?scp=85055617770&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055617770&partnerID=8YFLogxK
U2 - 10.1124/mol.118.112912
DO - 10.1124/mol.118.112912
M3 - Article
C2 - 30262595
AN - SCOPUS:85055617770
SN - 0026-895X
VL - 94
SP - 1321
EP - 1333
JO - Molecular pharmacology
JF - Molecular pharmacology
IS - 6
ER -