TY - JOUR
T1 - Functional differences between E. Coli and eskape pathogen groes/groel
AU - Sivinski, Jared
AU - Ambrose, Andrew J.
AU - Panfilenko, Iliya
AU - Zerio, Christopher J.
AU - Machulis, Jason M.
AU - Mollasalehi, Niloufar
AU - Kaneko, Lynn K.
AU - Stevens, McKayla
AU - Ray, Anne Marie
AU - Park, Yangshin
AU - Wu, Chunxiang
AU - Hoang, Quyen Q.
AU - Johnson, Steven M.
AU - Chapman, Eli
N1 - Funding Information:
Research reported in this publication was supported by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health (NIH) under Award no. R01GM120350. Q.Q.H., C.W., and Y.P. additionally acknowledge support by NIH grants 5R01GM111639 and 5R01GM115844. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work was also supported in part by startup funds from the IU School of Medicine (S.M.J.) and the University of Arizona (E.C.). We declare no competing financial interests.
Publisher Copyright:
© 2021 Sivinski et al.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - As the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chap-eronins. Herein we report our initial efforts to characterize the GroES/GroEL chapero-nins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and-null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/ GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable orga-nism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) orbothE. coli GroES and GroEL (E. faecium). In addition, GroES/ GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all condi-tions. The resulting viable strains, in which E. coli groESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, butdisplayedan elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity. IMPORTANCE The GroES/GroEL chaperonin from E. coli has long served as the model system for other chaperonins. This assumption seemed valid because of the high conservation between the chaperonins. It was, therefore, shocking to discover ESKAPE pathogen GroES/GroEL formed mixed-complex chaperonins in the presence of E. coli GroES/GroEL, leading to loss of organism viability in some cases. Complete replacement of E. coli groESL with ESKAPE groESL restored organism viability, but produced an elongated phenotype, suggesting differences in chaperonin function, including client specificity and/or refolding cycle rates. These data offer important mechanistic insight into these remarkable machines, and the new strains developed allow for the synthesis of homogeneous chaperonins for biochemical studies and to further our efforts to de-velop chaperonin-targeted antibiotics.
AB - As the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chap-eronins. Herein we report our initial efforts to characterize the GroES/GroEL chapero-nins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and-null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/ GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable orga-nism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) orbothE. coli GroES and GroEL (E. faecium). In addition, GroES/ GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all condi-tions. The resulting viable strains, in which E. coli groESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, butdisplayedan elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity. IMPORTANCE The GroES/GroEL chaperonin from E. coli has long served as the model system for other chaperonins. This assumption seemed valid because of the high conservation between the chaperonins. It was, therefore, shocking to discover ESKAPE pathogen GroES/GroEL formed mixed-complex chaperonins in the presence of E. coli GroES/GroEL, leading to loss of organism viability in some cases. Complete replacement of E. coli groESL with ESKAPE groESL restored organism viability, but produced an elongated phenotype, suggesting differences in chaperonin function, including client specificity and/or refolding cycle rates. These data offer important mechanistic insight into these remarkable machines, and the new strains developed allow for the synthesis of homogeneous chaperonins for biochemical studies and to further our efforts to de-velop chaperonin-targeted antibiotics.
KW - Antibiotic
KW - Antimicrobial
KW - Chaperone
KW - Chaperonin
KW - ESKAPE
KW - GroEL
KW - GroES
KW - HSP10
KW - HSP60
UR - http://www.scopus.com/inward/record.url?scp=85099218655&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099218655&partnerID=8YFLogxK
U2 - 10.1128/mBio.02167-20
DO - 10.1128/mBio.02167-20
M3 - Article
C2 - 33436430
AN - SCOPUS:85099218655
VL - 12
SP - 1
EP - 16
JO - mBio
JF - mBio
SN - 2161-2129
IS - 1
M1 - e02167-20
ER -