From statistical significance to clinical relevance: A simple algorithm to integrate brain natriuretic peptide and the Seattle Heart Failure Model for risk stratification in heart failure

Omar F. Abouezzeddine, Benjamin French, Sultan A. Mirzoyev, Allan S. Jaffe, Wayne C. Levy, James C. Fang, Nancy K. Sweitzer, Thomas P. Cappola, Margaret M. Redfield

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Background Heart failure (HF) guidelines recommend brain natriuretic peptide (BNP) and multivariable risk scores, such as the Seattle Heart Failure Model (SHFM), to predict risk in HF with reduced ejection fraction (HFrEF). A practical way to integrate information from these 2 prognostic tools is lacking. We sought to establish a SHFM+BNP risk-stratification algorithm. Methods The retrospective derivation cohort included consecutive patients with HFrEF at the Mayo Clinic. One-year outcome (death, transplantation or ventricular assist device) was assessed. The SHFM+BNP algorithm was derived by stratifying patients within SHFM-predicted risk categories (≤2.5%, 2.6% to ≤10%, >10%) according to BNP above or below 700 pg/ml and comparing SHFM-predicted and observed event rates within each SHFM+BNP category. The algorithm was validated in a prospective, multicenter HFrEF registry (Penn HF Study). Results Derivation (n = 441; 1-year event rate 17%) and validation (n = 1,513; 1-year event rate 12%) cohorts differed with the former being older and more likely ischemic with worse symptoms, lower EF, worse renal function and higher BNP and SHFM scores. In both cohorts, across the 3 SHFM-predicted risk strata, a BNP >700 pg/ml consistently identified patients with approximately 3-fold the risk that the SHFM would have otherwise estimated, regardless of stage of HF, intensity and duration of HF therapy and comorbidities. Conversely, the SHFM was appropriately calibrated in patients with a BNP <700 pg/ml. Conclusion The simple SHFM+BNP algorithm displays stable performance across diverse HFrEF cohorts and may enhance risk stratification to enable appropriate decision-making regarding HF therapeutic or palliative strategies.

Original languageEnglish (US)
Pages (from-to)714-721
Number of pages8
JournalJournal of Heart and Lung Transplantation
Volume35
Issue number6
DOIs
StatePublished - Jun 1 2016

Keywords

  • Seattle Heart Failure Model
  • biomarkers
  • heart failure
  • natriuretic peptides
  • prognosis
  • risk stratification

ASJC Scopus subject areas

  • Surgery
  • Pulmonary and Respiratory Medicine
  • Cardiology and Cardiovascular Medicine
  • Transplantation

Fingerprint

Dive into the research topics of 'From statistical significance to clinical relevance: A simple algorithm to integrate brain natriuretic peptide and the Seattle Heart Failure Model for risk stratification in heart failure'. Together they form a unique fingerprint.

Cite this