Forming planetesimals in solar and extrasolar nebulae

E. Chiang, A. N. Youdin

Research output: Contribution to journalArticlepeer-review

323 Scopus citations

Abstract

Planets are built from planetesimals: solids larger than a kilometer that grow by colliding in pairs. Planetesimals themselves are unlikely to form by two-body collisions alone; subkilometer objects have gravitational fields individually too weak, and electrostatic attraction is too feeble for growth beyond a few centimeters. We review the possibility that planetesimals form when self-gravity brings together vast ensembles of small particles. Even when self-gravity is weak, aerodynamic processes can accumulate solids relative to gas, paving the way for gravitational collapse. Particles pile up as they drift radially inward. Gas turbulence stirs particles but can also seed collapse by clumping them. Whereas the feedback of solids on gas triggers vertical-shear instabilities that obstruct self-gravity, this same feedback triggers streaming instabilities that strongly concentrate particles. Numerical simulations find that solids ∼10-100 cm in size gravitationally collapse in turbulent disks. We outline areas for progress, including the possibility that still smaller objects self-gravitate.

Original languageEnglish (US)
Pages (from-to)493-522
Number of pages30
JournalAnnual Review of Earth and Planetary Sciences
Volume38
DOIs
StatePublished - 2010
Externally publishedYes

Keywords

  • Accretion
  • Circumstellar disks
  • Fluid mechanics
  • Planet formation
  • Planets
  • Solar system
  • Turbulence

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Forming planetesimals in solar and extrasolar nebulae'. Together they form a unique fingerprint.

Cite this