Abstract
Background and Objective: The hamster cheek pouch carcinogenesis model, using chronic treatments of dimethylbenz[α]anthracene (DMBA) was used as a model system to investigate changes in epithelial tissue autofluorescence throughout the dysplasia-carcinoma sequence. Study Design/Materials and Methods: Fluorescence emission spectra were measured weekly from 42 DMBA-treated animals and 20 control animals at 337, 380, and 460 nm excitation. A subset of data in which histopathology was available was used to develop diagnostic algorithms to separate neoplastic and non-neoplastic tissue. The change in fluorescence intensity over time was examined in all samples at excitation-emission wavelength pairs identified as diagnostically useful. Results: Algorithms based on autofluorescence can separate neoplastic and non-neoplastic tissue with 95% sensitivity and 93% specificity. Greatest contributions to diagnostic algorithms are obtained at 380 nm excitation, and 430, 470, and 600 nm emission. Changes in fluorescence intensity are apparent as early as 3 weeks after initial treatment with DMBA, whereas morphologic changes associated with dysplasia occur on average at 7.5-12.5 weeks after initial treatment. Conclusions: Fluorescence spectroscopy provides a potential tool to identify biochemical changes associated with dysplasia and hyperplasia, which precede morphologic changes observed in histologically stained sections.
Original language | English (US) |
---|---|
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Lasers in Surgery and Medicine |
Volume | 29 |
Issue number | 1 |
DOIs | |
State | Published - 2001 |
Externally published | Yes |
Keywords
- DMBA
- Fluorescence
- Spectrometry
- Syrian hamster
ASJC Scopus subject areas
- Surgery
- Dermatology