TY - JOUR
T1 - Fluid Dynamics of Ventricular Filling in the Embryonic Heart
AU - Miller, Laura A.
N1 - Funding Information:
Acknowledgments The author would like to thank Arvind San-thanakrisnan, Anil Shenoy, and Charles Peskin for meaningful discussions concerning the biofluid mechanics of heart development. The author would also like to thank the Applied Mathematics Fluids Lab Group at the University of North Carolina Chapel Hill for their input and intuition. This work was funded by BWF CASI Award ID # 1005782.01.
PY - 2011/9
Y1 - 2011/9
N2 - The vertebrate embryonic heart first forms as a valveless tube that pumps blood using waves of contraction. As the heart develops, the atrium and ventricle bulge out from the heart tube, and valves begin to form through the expansion of the endocardial cushions. As a result of changes in geometry, conduction velocities, and material properties of the heart wall, the fluid dynamics and resulting spatial patterns of shear stress and transmural pressure change dramatically. Recent work suggests that these transitions are significant because fluid forces acting on the cardiac walls, as well as the activity of myocardial cells that drive the flow, are necessary for correct chamber and valve morphogenesis. In this article, computational fluid dynamics was used to explore how spatial distributions of the normal forces acting on the heart wall change as the endocardial cushions grow and as the cardiac wall increases in stiffness. The immersed boundary method was used to simulate the fluid-moving boundary problem of the cardiac wall driving the motion of the blood in a simplified model of a two-dimensional heart. The normal forces acting on the heart walls increased during the period of one atrial contraction because inertial forces are negligible and the ventricular walls must be stretched during filling. Furthermore, the force required to fill the ventricle increased as the stiffness of the ventricular wall was increased. Increased endocardial cushion height also drastically increased the force necessary to contract the ventricle. Finally, flow in the moving boundary model was compared to flow through immobile rigid chambers, and the forces acting normal to the walls were substantially different.
AB - The vertebrate embryonic heart first forms as a valveless tube that pumps blood using waves of contraction. As the heart develops, the atrium and ventricle bulge out from the heart tube, and valves begin to form through the expansion of the endocardial cushions. As a result of changes in geometry, conduction velocities, and material properties of the heart wall, the fluid dynamics and resulting spatial patterns of shear stress and transmural pressure change dramatically. Recent work suggests that these transitions are significant because fluid forces acting on the cardiac walls, as well as the activity of myocardial cells that drive the flow, are necessary for correct chamber and valve morphogenesis. In this article, computational fluid dynamics was used to explore how spatial distributions of the normal forces acting on the heart wall change as the endocardial cushions grow and as the cardiac wall increases in stiffness. The immersed boundary method was used to simulate the fluid-moving boundary problem of the cardiac wall driving the motion of the blood in a simplified model of a two-dimensional heart. The normal forces acting on the heart walls increased during the period of one atrial contraction because inertial forces are negligible and the ventricular walls must be stretched during filling. Furthermore, the force required to fill the ventricle increased as the stiffness of the ventricular wall was increased. Increased endocardial cushion height also drastically increased the force necessary to contract the ventricle. Finally, flow in the moving boundary model was compared to flow through immobile rigid chambers, and the forces acting normal to the walls were substantially different.
KW - Biofluids
KW - Heart development
KW - Shear stress
UR - http://www.scopus.com/inward/record.url?scp=80051468918&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051468918&partnerID=8YFLogxK
U2 - 10.1007/s12013-011-9157-9
DO - 10.1007/s12013-011-9157-9
M3 - Article
C2 - 21336589
AN - SCOPUS:80051468918
SN - 1085-9195
VL - 61
SP - 33
EP - 45
JO - Cell Biochemistry and Biophysics
JF - Cell Biochemistry and Biophysics
IS - 1
ER -