TY - GEN
T1 - Flow control using steady blowing and suction strips in a mach 6 boundary layer on a flared cone
AU - Hader, Christoph
AU - Fasel, Hermann F.
N1 - Funding Information:
This work was supported by AFOSR Grant FA9550-19-1-0208, with Dr. Sarah Popkin serving as the program manager. Computer time was provided by the US Army Engineering Research and Development Center (ERDC) under the Department of Defense (DOD) High Performance Computing Modernization Program (HPCMP). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U. S. Government.
Publisher Copyright:
© 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Direct Numerical Simulations (DNS) were carried out in order to explore flow control using steady blowing and suction (control) strips at the wall of a flared cone at Mach 6. The flared cone geometry and the flow conditions of the experiments in the Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) at Purdue University were used for the numerical investigations. The objective of the flow control strategy was to delay or mitigate the negative consequences associated with the nonlinear transition stages, such as the overshoots of skin-friction and heat transfer and the development of hot streaks. A parameter study on the influence of the steady forcing using blowing and suction strips on the fundamental resonance revealed that the most effective location of the control strips to attenuate the growth rate of the secondary disturbance waves is where the primary wave begins to saturate. To effectively suppress the secondary instability mechanism, the required width of the steady blowing and suction strip was approximately four boundary layer thicknesses. Applying one control strip in a fundamental breakdown simulation resulted in significant delay of the “hot” streak development on the surface of the cone, which was previously observed in experiments and simulations. With an additional blowing and suction strip, the streak onset was delayed so that they were no longer observable in the entire computational domain.
AB - Direct Numerical Simulations (DNS) were carried out in order to explore flow control using steady blowing and suction (control) strips at the wall of a flared cone at Mach 6. The flared cone geometry and the flow conditions of the experiments in the Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) at Purdue University were used for the numerical investigations. The objective of the flow control strategy was to delay or mitigate the negative consequences associated with the nonlinear transition stages, such as the overshoots of skin-friction and heat transfer and the development of hot streaks. A parameter study on the influence of the steady forcing using blowing and suction strips on the fundamental resonance revealed that the most effective location of the control strips to attenuate the growth rate of the secondary disturbance waves is where the primary wave begins to saturate. To effectively suppress the secondary instability mechanism, the required width of the steady blowing and suction strip was approximately four boundary layer thicknesses. Applying one control strip in a fundamental breakdown simulation resulted in significant delay of the “hot” streak development on the surface of the cone, which was previously observed in experiments and simulations. With an additional blowing and suction strip, the streak onset was delayed so that they were no longer observable in the entire computational domain.
UR - http://www.scopus.com/inward/record.url?scp=85100308558&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100308558&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85100308558
SN - 9781624106095
T3 - AIAA Scitech 2021 Forum
SP - 1
EP - 21
BT - AIAA Scitech 2021 Forum
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2021
Y2 - 11 January 2021 through 15 January 2021
ER -