Flow control for wind turbine airfoil

Andreas Gross, Hermann F. Fasel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The flow over a NREL S822 wind turbine airfoil was simulated for a chord Reynolds number of 100,000 and an angle of attack of 5deg. These conditions approximately match the blade element conditions at 80% radius of a 2m diameter turbine operating at 300rpm. A simulation of the uncontrolled flow with steady approach flow conditions shows boundary layer separation on the suction side which is consistent with University of Illinois at Urbana-Champaign experimental data. Active flow control has the potential to locally (and on demand) reduce the unsteady loads on individual turbine blades during non-nominal operation, thereby increasing turbine life. In addition, flow control may help lower the cut-in wind speed. Unsteady flow control for reducing the suction side separation using pulsed vortex generator jets, flip-flop jets, and plasma actuators were evaluated. It was found that very low actuation amplitudes were already sufficient for eliminating the suction side separation. The high effectiveness and efficiency is traced back to hydrodynamic instabilities that lead to a downstream growth of the forced disturbances. Too high actuator amplitudes resulted in early disturbance saturation which made the control inefficient.

Original languageEnglish (US)
Title of host publicationASME 2011 5th International Conference on Energy Sustainability, ES 2011
Pages2051-2060
Number of pages10
EditionPARTS A, B, AND C
DOIs
StatePublished - 2011
EventASME 2011 5th International Conference on Energy Sustainability, ES 2011 - Washington, DC, United States
Duration: Aug 7 2011Aug 10 2011

Publication series

NameASME 2011 5th International Conference on Energy Sustainability, ES 2011
NumberPARTS A, B, AND C

Other

OtherASME 2011 5th International Conference on Energy Sustainability, ES 2011
Country/TerritoryUnited States
CityWashington, DC
Period8/7/118/10/11

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Flow control for wind turbine airfoil'. Together they form a unique fingerprint.

Cite this