TY - JOUR
T1 - Fitness level impacts salivary antimicrobial protein responses to a single bout of cycling exercise
AU - Kunz, Hawley
AU - Bishop, Nicolette C.
AU - Spielmann, Guillaume
AU - Pistillo, Mira
AU - Reed, Justin
AU - Ograjsek, Teja
AU - Park, Yoonjung
AU - Mehta, Satish K.
AU - Pierson, Duane L.
AU - Simpson, Richard J.
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - Purpose: Salivary antimicrobial proteins (sAMPs) protect the upper respiratory tract (URTI) from invading microorganisms and have been linked with URTI infection risk in athletes. While high training volume is associated with increased URTI risk, it is not known if fitness affects the sAMP response to acute exercise. This study compared the sAMP responses to various exercising workloads of highly fit experienced cyclists with those who were less fit. Methods: Seventeen experienced cyclists (nine highly fit; eight less fit) completed three 30-min exercise trials at workloads corresponding to −5, +5 and +15 % of the individual blood lactate threshold. Saliva samples were collected pre- and post-exercise to determine the concentration and secretion of α-amylase, human neutrophil proteins 1–3 (HNP1–3) lactoferrin, LL-37, lysozyme, and salivary SIgA. Results: The concentration and/or secretion of all sAMPs increased post-exercise, but only α-amylase was sensitive to exercise workload. Highly fit cyclists had lower baseline concentrations of α-amylase, HNP1–3, and lactoferrin, although secretion rates did not differ between the groups. Highly fit cyclists did, however, exhibit greater post-exercise increases in the concentration and/or secretion of a majority of measured sAMPs (percentage difference between highly fit and less fit in parentheses), including α-amylase concentration (+107 %) and secretion (+148 %), HNP1–3 concentration (+97 %) and secretion (+158 %), salivary SIgA concentration (+181 %), lactoferrin secretion (+209 %) and LL-37 secretion (+138 %). Conclusion: We show for the first time that fitness level is a major determinant of exercise-induced changes in sAMPs. This might be due to training-induced alterations in parasympathetic and sympathetic nervous system activation.
AB - Purpose: Salivary antimicrobial proteins (sAMPs) protect the upper respiratory tract (URTI) from invading microorganisms and have been linked with URTI infection risk in athletes. While high training volume is associated with increased URTI risk, it is not known if fitness affects the sAMP response to acute exercise. This study compared the sAMP responses to various exercising workloads of highly fit experienced cyclists with those who were less fit. Methods: Seventeen experienced cyclists (nine highly fit; eight less fit) completed three 30-min exercise trials at workloads corresponding to −5, +5 and +15 % of the individual blood lactate threshold. Saliva samples were collected pre- and post-exercise to determine the concentration and secretion of α-amylase, human neutrophil proteins 1–3 (HNP1–3) lactoferrin, LL-37, lysozyme, and salivary SIgA. Results: The concentration and/or secretion of all sAMPs increased post-exercise, but only α-amylase was sensitive to exercise workload. Highly fit cyclists had lower baseline concentrations of α-amylase, HNP1–3, and lactoferrin, although secretion rates did not differ between the groups. Highly fit cyclists did, however, exhibit greater post-exercise increases in the concentration and/or secretion of a majority of measured sAMPs (percentage difference between highly fit and less fit in parentheses), including α-amylase concentration (+107 %) and secretion (+148 %), HNP1–3 concentration (+97 %) and secretion (+158 %), salivary SIgA concentration (+181 %), lactoferrin secretion (+209 %) and LL-37 secretion (+138 %). Conclusion: We show for the first time that fitness level is a major determinant of exercise-induced changes in sAMPs. This might be due to training-induced alterations in parasympathetic and sympathetic nervous system activation.
KW - Exercise intensity
KW - Exercise training
KW - Fitness
KW - Innate mucosal immunity
KW - Salivary antimicrobial proteins
UR - http://www.scopus.com/inward/record.url?scp=84939990134&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84939990134&partnerID=8YFLogxK
U2 - 10.1007/s00421-014-3082-8
DO - 10.1007/s00421-014-3082-8
M3 - Article
C2 - 25557386
AN - SCOPUS:84939990134
SN - 1439-6319
VL - 115
SP - 1015
EP - 1027
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
IS - 5
ER -