TY - GEN
T1 - First closed-loop visible AO test results for the advanced adaptive secondary AO system for the Magellan Telescope
T2 - Adaptive Optics Systems III
AU - Close, Laird M.
AU - Males, Jared R.
AU - Kopon, Derek
AU - Gasho, Victor
AU - Follette, Katherine B.
AU - Hinz, Phil
AU - Morzinski, Katie
AU - Uomoto, Alan
AU - Hare, Tyson
AU - Riccardi, Armando
AU - Esposito, Simone
AU - Puglisi, Alfio
AU - Pinna, Enrico
AU - Busoni, Lorenzo
AU - Arcidiacono, Carmelo
AU - Xompero, Marco
AU - Briguglio, Runa
AU - Quiros-Pacheco, Fernando
AU - Argomedo, Javier
N1 - Funding Information:
We thank H. Beck, W. vonder Linden, H.-G. Matuttis,P .F. Meier, R. Micnas and I. Morgenstern for useful discussionsT. he work was supportebd y the SwissN ationaFl und.
PY - 2012
Y1 - 2012
N2 - The heart of the 6.5 Magellan AO system (MagAO) is a 585 actuator adaptive secondary mirror (ASM) with <1 msec response times (0.7 ms typically). This adaptive secondary will allow low emissivity and high-contrast AO science. We fabricated a high order (561 mode) pyramid wavefront sensor (similar to that now successfully used at the Large Binocular Telescope). The relatively high actuator count (and small projected ∼23 cm pitch) allows moderate Strehls to be obtained by MagAO in the "visible" (0.63-1.05 μm). To take advantage of this we have fabricated an AO CCD science camera called "VisAO". Complete "end-to-end" closed-loop lab tests of MagAO achieve a solid, broad-band, 37% Strehl (122 nm rms) at 0.76 μm (i') with the VisAO camera in 0.8" simulated seeing (13 cm ro at V) with fast 33 mph winds and a 40 m Lo locked on R=8 mag artificial star. These relatively high visible wavelength Strehls are enabled by our powerful combination of a next generation ASM and a Pyramid WFS with 400 controlled modes and 1000 Hz sample speeds (similar to that used successfully on-sky at the LBT). Currently only the VisAO science camera is used for lab testing of MagAO, but this high level of measured performance (122 nm rms) promises even higher Strehls with our IR science cameras. On bright (R=8 mag) stars we should achieve very high Strehls (>70% at H) in the IR with the existing MagAO Clio2 (λ=1-5.3 μm) science camera/coronagraph or even higher (∼98% Strehl) the Mid-IR (8-26 microns) with the existing BLINC/MIRAC4 science camera in the future. To eliminate non-common path vibrations, dispersions, and optical errors the VisAO science camera is fed by a common path advanced triplet ADC and is piggy-backed on the Pyramid WFS optical board itself. Also a high-speed shutter can be used to block periods of poor correction. The entire system passed CDR in June 2009, and we finished the closed-loop system level testing phase in December 2011. Final system acceptance ("pre-ship" review) was passed in February 2012. In May 2012 the entire AO system is was successfully shipped to Chile and fully tested/aligned. It is now in storage in the Magellan telescope clean room in anticipation of "First Light" scheduled for December 2012. An overview of the design, attributes, performance, and schedule for the Magellan AO system and its two science cameras are briefly presented here.
AB - The heart of the 6.5 Magellan AO system (MagAO) is a 585 actuator adaptive secondary mirror (ASM) with <1 msec response times (0.7 ms typically). This adaptive secondary will allow low emissivity and high-contrast AO science. We fabricated a high order (561 mode) pyramid wavefront sensor (similar to that now successfully used at the Large Binocular Telescope). The relatively high actuator count (and small projected ∼23 cm pitch) allows moderate Strehls to be obtained by MagAO in the "visible" (0.63-1.05 μm). To take advantage of this we have fabricated an AO CCD science camera called "VisAO". Complete "end-to-end" closed-loop lab tests of MagAO achieve a solid, broad-band, 37% Strehl (122 nm rms) at 0.76 μm (i') with the VisAO camera in 0.8" simulated seeing (13 cm ro at V) with fast 33 mph winds and a 40 m Lo locked on R=8 mag artificial star. These relatively high visible wavelength Strehls are enabled by our powerful combination of a next generation ASM and a Pyramid WFS with 400 controlled modes and 1000 Hz sample speeds (similar to that used successfully on-sky at the LBT). Currently only the VisAO science camera is used for lab testing of MagAO, but this high level of measured performance (122 nm rms) promises even higher Strehls with our IR science cameras. On bright (R=8 mag) stars we should achieve very high Strehls (>70% at H) in the IR with the existing MagAO Clio2 (λ=1-5.3 μm) science camera/coronagraph or even higher (∼98% Strehl) the Mid-IR (8-26 microns) with the existing BLINC/MIRAC4 science camera in the future. To eliminate non-common path vibrations, dispersions, and optical errors the VisAO science camera is fed by a common path advanced triplet ADC and is piggy-backed on the Pyramid WFS optical board itself. Also a high-speed shutter can be used to block periods of poor correction. The entire system passed CDR in June 2009, and we finished the closed-loop system level testing phase in December 2011. Final system acceptance ("pre-ship" review) was passed in February 2012. In May 2012 the entire AO system is was successfully shipped to Chile and fully tested/aligned. It is now in storage in the Magellan telescope clean room in anticipation of "First Light" scheduled for December 2012. An overview of the design, attributes, performance, and schedule for the Magellan AO system and its two science cameras are briefly presented here.
KW - Adaptive secondary mirror
KW - High-Contrast
KW - Visible adaptive optics
UR - http://www.scopus.com/inward/record.url?scp=84871761459&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871761459&partnerID=8YFLogxK
U2 - 10.1117/12.926545
DO - 10.1117/12.926545
M3 - Conference contribution
AN - SCOPUS:84871761459
SN - 9780819491480
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Adaptive Optics Systems III
Y2 - 1 July 2012 through 6 July 2012
ER -