Fireball multi object spectrograph: As-built optic performances

R. Grange, B. Milliard, G. Lemaitre, S. Quiret, S. Pascal, A. Origné, E. Hamden, D. Schiminovich

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Fireball (Faint Intergalactic Redshifted Emission Balloon) is a NASA/CNES balloon-borne experiment to study the faint diffuse circumgalactic medium from the line emissions in the ultraviolet (200 nm) above 37 km flight altitude. Fireball relies on a Multi Object Spectrograph (MOS) that takes full advantage of the new high QE, low noise 13 μm pixels UV EMCCD. The MOS is fed by a 1 meter diameter parabola with an extended field (1000 arcmin2) using a highly aspherized two mirror corrector. All the optical train is working at F/2.5 to maintain a high signal to noise ratio. The spectrograph (R∼ 2200 and 1.5 arcsec FWHM) is based on two identical Schmidt systems acting as collimator and camera sharing a 2400 g/mm aspherized reflective Schmidt grating. This grating is manufactured from active optics methods by double replication technique of a metal deformable matrix whose active clear aperture is built-in to a rigid elliptical contour. The payload and gondola are presently under integration at LAM. We will present the alignment procedure and the as-built optic performances of the Fireball instrument.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2016
Subtitle of host publicationUltraviolet to Gamma Ray
EditorsMarshall Bautz, Tadayuki Takahashi, Jan-Willem A. den Herder
PublisherSPIE
ISBN (Electronic)9781510601895
DOIs
StatePublished - 2016
Externally publishedYes
EventSpace Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray - Edinburgh, United Kingdom
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9905
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherSpace Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray
Country/TerritoryUnited Kingdom
CityEdinburgh
Period6/26/167/1/16

Keywords

  • Multi-object spectroscopy
  • Spectrograph
  • Ultraviolet

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Fireball multi object spectrograph: As-built optic performances'. Together they form a unique fingerprint.

Cite this