Abstract
We present a translationally invariant formulation of the no-core shell model approach for few-nucleon systems. We discuss a general method of antisymmetrization of the harmonic-oscillator (HO) basis depending on Jacobi coordinates. The use of a translationally invariant basis allows us to employ larger model spaces than in traditional shell-model calculations. Moreover, in addition to two-body effective interactions, three-or higher-body effective interactions as well as real three-body interactions can be utilized. In the present study we apply the formalism to solve three and four nucleon systems interacting by the CD-Bonn nucleon-nucleon (NN) potential in model spaces that include up to 34ℏΩ and 16ℏΩ HO excitations, respectively. Results of ground-state as well as excited-state energies, rms radii, and magnetic moments are discussed. In addition, we compare charge form factor results obtained using the CD-Bonn and Argonne V8′ NN potentials.
Original language | English (US) |
---|---|
Article number | 044001 |
Pages (from-to) | 440011-4400116 |
Number of pages | 3960106 |
Journal | Physical Review C - Nuclear Physics |
Volume | 61 |
Issue number | 4 |
DOIs | |
State | Published - Apr 2000 |
Externally published | Yes |
ASJC Scopus subject areas
- Nuclear and High Energy Physics