TY - JOUR
T1 - Fat or lean tissue mass
T2 - Which one is the major determinant of bone mineral mass in healthy postmenopausal women?
AU - Chen, Zhao
AU - Lohman, Timothy G.
AU - Stini, William A.
AU - Ritenbaugh, Cheryl
AU - Aickin, Mikel
PY - 1997
Y1 - 1997
N2 - The relative importance of fat and lean tissue mass in determining bone mineral mass among postmenopausal women was examined in this 1-year longitudinal study. Fifty postmenopausal Caucasian women entered the study; 45 of them completed a 1-year follow-up. Dual-energy X-ray absorptiometry was employed for measuring total and regional bone mineral density (BMD) and bone mineral content (BMC), fat tissue mass (FTM), lean tissue mass (LTM), and body weight. Results from linear regression analysis using the cross- sectional data (n = 50) of the study indicated that LTM explained a larger percentage of variation in bone mineral mass than did FTM. FTM and LTM were found to be moderately correlated (r = 0.55); when FTM was entered in the same predicting regression models, LTM was a significant predictor (p < 0.05) of the total and regional BMC, but not BMD. The percent FTM (and inversely %LTM) was correlated with BMD and BMC, but significant correlation was primarily found only for total body BMD (or BMC). Weight was the best predictor of total body BMD and BMC. Longitudinally (n = 45), annual changes in both FTM and weight were significantly associated with annual changes in regional BMD after adjustment for initial bone mineral values (p < 0.05). We conclude that bone mineral mass is more closely related to LTM than to FTM, while annual changes in regional BMD are more closely correlated with changes in FTM in healthy postmenopausal women. Meanwhile, increased body weight is significantly associated with increased bone mineral mass.
AB - The relative importance of fat and lean tissue mass in determining bone mineral mass among postmenopausal women was examined in this 1-year longitudinal study. Fifty postmenopausal Caucasian women entered the study; 45 of them completed a 1-year follow-up. Dual-energy X-ray absorptiometry was employed for measuring total and regional bone mineral density (BMD) and bone mineral content (BMC), fat tissue mass (FTM), lean tissue mass (LTM), and body weight. Results from linear regression analysis using the cross- sectional data (n = 50) of the study indicated that LTM explained a larger percentage of variation in bone mineral mass than did FTM. FTM and LTM were found to be moderately correlated (r = 0.55); when FTM was entered in the same predicting regression models, LTM was a significant predictor (p < 0.05) of the total and regional BMC, but not BMD. The percent FTM (and inversely %LTM) was correlated with BMD and BMC, but significant correlation was primarily found only for total body BMD (or BMC). Weight was the best predictor of total body BMD and BMC. Longitudinally (n = 45), annual changes in both FTM and weight were significantly associated with annual changes in regional BMD after adjustment for initial bone mineral values (p < 0.05). We conclude that bone mineral mass is more closely related to LTM than to FTM, while annual changes in regional BMD are more closely correlated with changes in FTM in healthy postmenopausal women. Meanwhile, increased body weight is significantly associated with increased bone mineral mass.
UR - http://www.scopus.com/inward/record.url?scp=0031034487&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031034487&partnerID=8YFLogxK
U2 - 10.1359/jbmr.1997.12.1.144
DO - 10.1359/jbmr.1997.12.1.144
M3 - Article
C2 - 9240737
AN - SCOPUS:0031034487
SN - 0884-0431
VL - 12
SP - 144
EP - 151
JO - Journal of Bone and Mineral Research
JF - Journal of Bone and Mineral Research
IS - 1
ER -