Abstract
We describe here the design and construction of a modern, state-of-the-art nuclear magnetic resonance (NMR) field-cycling instrument. Fourier transform NMR spectra of both liquid and solid samples can be measured, and spin-lattice relaxation times (T1Z) investigated over a broad range of magnetic field strengths ranging from 0 to 2 T. The instrument is based upon an existing personal computer-based NMR spectrometer [C. Job, R. M. Pearson, and M. F. Brown, Rev. Sci. Instrum. 65, 3354 (1994)] which has been expanded into a fully computer-controlled field-cycling instrument. The magnetic field cycling is accomplished electronically by utilizing fast switching thyristors and a storage capacitor based on the Redfield energy storage concept. Unique aspects of the design include the field-cycling magnet, which can reach fields as high as 2 T; the personal computer-based NMR spectrometer and associated waveform electronics; and the use of a commercially available pulse width modulation switching current amplifier, having low internal power dissipation and a fast current settling time. Using this new technology T1Z relaxation times as short as 1 ms can be readily measured.
Original language | English (US) |
---|---|
Pages (from-to) | 2113-2122 |
Number of pages | 10 |
Journal | Review of Scientific Instruments |
Volume | 67 |
Issue number | 6 |
DOIs | |
State | Published - Jun 1996 |
ASJC Scopus subject areas
- Instrumentation