Abstract
The mechanism of the 1'-4 coupling reaction between isopentenyl pyrophosphate and geranyl pyrophosphate catalyzed by farnesyl pyrophosphate synthetase from porcine liver was studied with the allylic substrate analogue 2-fluorogeranyl pyrophosphate. 2-Fluorogeranyl pyrophosphate is an alternate substrate for the enzyme, yielding 6-fluorofarnesyl pyrophosphate upon condensation with isopentenyl pyrophosphate. The Michaelis constant for the fluoroanalogue, Km = 1.1 micron, is similar to that measured for geranyl pyrophosphate, Km = 0.7 micron. However, the rate of condensation with the fluoroanalogue was only 8.4 X 10(-4) that of the normal reaction. A similar rate of depression (4.4 X 10(-3)) was found for solvolysis of geranyl methanesulfonate and the corresponding 2-fluoro derivative, reactions known to proceed via cationic intermediates. In contrast, displacement of chlorine from geranyl chloride and 2-fluorogeranyl chloride by cyanide showed a small (2-fold) rate enhancement for the fluoro compound. Finally, 2-fluorogeranyl pyrophosphate is a competitive inhibitor against geranyl pyrophosphate. These data are interpreted in terms of an ionization-condensation-elimination mechanism for the 1'-4 coupling reaction.
Original language | English (US) |
---|---|
Pages (from-to) | 7227-7233 |
Number of pages | 7 |
Journal | Journal of Biological Chemistry |
Volume | 253 |
Issue number | 20 |
State | Published - Oct 25 1978 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology