Fairness in Networks: Social Capital, Information Access, and Interventions

Suresh Venkatasubramanian, Carlos Scheidegger, Sorelle Friedler, Aaron Clauset

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

As ML systems have become more broadly adopted in high-stakes settings, our scrutiny of them should reflect their greater impact on real lives. The field of fairness in data mining and machine learning has blossomed in the last decade, but most of the attention has been directed at tabular and image data. In this tutorial, we will discuss recent advances in network fairness. Specifically, we focus on problems where one's position in a network holds predictive value (e.g., in a classification or regression setting) and favorable network position can lead to a cascading loop of positive outcomes, leading to increased inequality. We start by reviewing important sociological notions such as social capital, information access, and influence, as well as the now-standard definitions of fairness in ML settings. We will discuss the formalizations of these concepts in the network fairness setting, presenting recent work in the field, and future directions.

Original languageEnglish (US)
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages4078-4079
Number of pages2
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period8/14/218/18/21

Keywords

  • fairness
  • information flow
  • networks

ASJC Scopus subject areas

  • Software
  • Information Systems

Fingerprint

Dive into the research topics of 'Fairness in Networks: Social Capital, Information Access, and Interventions'. Together they form a unique fingerprint.

Cite this