EZH2 inhibitors promote β-like cell regeneration in young and adult type 1 diabetes donors

Keith Al-Hasani, Safiya Naina Marikar, Harikrishnan Kaipananickal, Scott Maxwell, Jun Okabe, Ishant Khurana, Thomas Karagiannis, Julia J. Liang, Lina Mariana, Thomas Loudovaris, Thomas Kay, Assam El-Osta

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

β-cells are a type of endocrine cell found in pancreatic islets that synthesize, store and release insulin. In type 1 diabetes (T1D), T-cells of the immune system selectively destroy the insulin-producing β-cells. Destruction of these cells leads to a lifelong dependence on exogenous insulin administration for survival. Consequently, there is an urgent need to identify novel therapies that stimulate β-cell growth and induce β-cell function. We and others have shown that pancreatic ductal progenitor cells are a promising source for regenerating β-cells for T1D owing to their inherent differentiation capacity. Default transcriptional suppression is refractory to exocrine reaction and tightly controls the regenerative potential by the EZH2 methyltransferase. In the present study, we show that transient stimulation of exocrine cells, derived from juvenile and adult T1D donors to the FDA-approved EZH2 inhibitors GSK126 and Tazemetostat (Taz) influence a phenotypic shift towards a β-like cell identity. The transition from repressed to permissive chromatin states are dependent on bivalent H3K27me3 and H3K4me3 chromatin modification. Targeting EZH2 is fundamental to β-cell regenerative potential. Reprogrammed pancreatic ductal cells exhibit insulin production and secretion in response to a physiological glucose challenge ex vivo. These pre-clinical studies underscore the potential of small molecule inhibitors as novel modulators of ductal progenitor differentiation and a promising new approach for the restoration of β-like cell function.

Original languageEnglish (US)
Article number2
JournalSignal Transduction and Targeted Therapy
Volume9
Issue number1
DOIs
StatePublished - Dec 2024
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'EZH2 inhibitors promote β-like cell regeneration in young and adult type 1 diabetes donors'. Together they form a unique fingerprint.

Cite this