Abstract
We investigate extremely red objects (EROs) using near- and mid-infrared observations in five passbands (3.6 to 24 μm) obtained from the Spitzer Space Telescope, and deep ground-based R and K imaging. The great sensitivity of the Infrared Array Camera (IRAC) camera allows us to detect 64 EROs (a surface density of 2.90 ± 0.36 arcmin-2; [3.6]AB < 23.7) in only 12 minutes of IRAC exposure time, by means of an R - [3.6] color cut (analogous to the traditional red R - K cut). A pure infrared K - [3.6] red cut detects a somewhat different population and may be more effective at selecting z > 1.3 EROs. We find ∼17% of all galaxies detected by IRAC at 3.6 or 4.5 μm to be EROs. These percentages rise to about 40% at 5.8 μm, and about 60% at 8.0 μm. We utilize the spectral bump at 1.6 μm to divide the EROs into broad redshift slices using only near-infrared colors (2.2/3.6/4.5 μm). We conclude that two-thirds of all EROs lie at redshift z > 1.3. Detections at 24 μm imply that at least 11% of 0.6 < z < 1.3 EROs and at least 22% of z > 1.3 EROs are dusty star-forming galaxies.
Original language | English (US) |
---|---|
Pages (from-to) | 107-111 |
Number of pages | 5 |
Journal | Astrophysical Journal, Supplement Series |
Volume | 154 |
Issue number | 1 |
DOIs | |
State | Published - Sep 2004 |
Keywords
- Cosmology: Observations
- Galaxies: Evolution
- Galaxies: High-redshift
- Galaxies: Photometry
- Galaxies: Starburst
- Infrared: Galaxies
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science