Extreme ultraviolet high-harmonic spectroscopy of solids

T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th Hassan, E. Goulielmakis

Research output: Contribution to journalArticlepeer-review

503 Scopus citations

Abstract

Extreme ultraviolet (EUV) high-harmonic radiation emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques and provides insight into fundamental structural and dynamic properties of matter. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments and theoretical predictions paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies. Here we demonstrate that thin films of SiO 2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO 2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics.

Original languageEnglish (US)
Pages (from-to)498-502
Number of pages5
JournalNature
Volume521
Issue number7553
DOIs
StatePublished - May 27 2015
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Extreme ultraviolet high-harmonic spectroscopy of solids'. Together they form a unique fingerprint.

Cite this