Extended power-law scaling of heavy-tailed random air-permeability fields in fractured and sedimentary rocks

A. Guadagnini, M. Riva, S. P. Neuman

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

We analyze the scaling behaviors of two field-scale log permeability data sets showing heavy-tailed frequency distributions in three and two spatial dimensions, respectively. One set consists of 1-m scale pneumatic packer test data from six vertical and inclined boreholes spanning a decameters scale block of unsaturated fractured tuffs near Superior, Arizona, the other of pneumatic minipermeameter data measured at a spacing of 15 cm along three horizontal transects on a 21 m long and 6 m high outcrop of the Upper Cretaceous Straight Cliffs Formation, including lower-shoreface bioturbated and cross-bedded sandstone near Escalante, Utah. Order q sample structure functions of each data set scale as a power xi(q)of separation scale or lag, s, over limited ranges of s. A procedure known as extended self-similarity (ESS) extends this range to all lags and yields a nonlinear (concave) functional relationship between xi(q) and. Whereas the literature tends to associate extended and nonlinear power-law scaling with multifractals or fractional Laplace motions, we have shown elsewhere that (a) ESS of data having a normal frequency distribution is theoretically consistent with (Gaussian) truncated (additive, self-affine, monofractal) fractional Brownian motion (tfBm), the latter being unique in predicting a breakdown in power-law scaling at small and large lags, and (b) nonlinear power-law scaling of data having either normal or heavy-tailed frequency distributions is consistent with samples from sub-Gaussian random fields or processes subordinated to tfBm or truncated fractional Gaussian noise (tfGn), stemming from lack of ergodicity which causes sample moments to scale differently than do their ensemble counterparts. Here we (i) demonstrate that the above two data sets are consistent with sub-Gaussian random fields subordinated to tfBm or tfGn and (ii) provide maximum likelihood estimates of parameters characterizing the corresponding Lávy stable subordinators and tfBm or tfGn functions.

Original languageEnglish (US)
Pages (from-to)3249-3260
Number of pages12
JournalHydrology and Earth System Sciences
Volume16
Issue number9
DOIs
StatePublished - 2012

ASJC Scopus subject areas

  • Water Science and Technology
  • Earth and Planetary Sciences (miscellaneous)

Fingerprint

Dive into the research topics of 'Extended power-law scaling of heavy-tailed random air-permeability fields in fractured and sedimentary rocks'. Together they form a unique fingerprint.

Cite this