Abstract
The central goal of our study was to explore the nature of the explanations generated by science and engineering majors with basic training in chemistry to account for the colligative properties of solutions. The work was motivated by our broader interest in the characterisation of the dominant types of explanations that science college students use to make sense of phenomena under conditions of limited time and limited explicit knowledge about a topic. Explanations were collected in written form using two different quizzes that students completed under time constraints at the end of a two-semester general chemistry course. Our study revealed that students' ability to generate causal/mechanical explanations depended on the nature of the task. In general, students were more inclined or able to generate mechanistic explanations to account for boiling-point elevation and freezing-point depression than to make sense of osmotic flow. The analysis of the types of causal explanations built by the study participants suggests that students may be biased towards some causal models or explanatory modes characterised as causal-additive and causal-static in our work. A large proportion of the students built non-causal teleological explanations to account for osmotic flow. None of the participants in our study used a dynamic model of matter as the basis for their explanations of any of the relevant phenomena; the idea of an underlying random process that is taking place at all times giving rise to emergent properties and behaviours was completely absent from their intuitive reasoning under conditions of limited time and knowledge.
Original language | English (US) |
---|---|
Pages (from-to) | 2393-2412 |
Number of pages | 20 |
Journal | International Journal of Science Education |
Volume | 32 |
Issue number | 18 |
DOIs | |
State | Published - Dec 2010 |
Keywords
- Assessment
- Chemistry education
- Colligative properties
- Emergence
- Explanation
- Reasoning
- University
ASJC Scopus subject areas
- Education